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У вступі обґрунтовано вибір теми дисертаційної роботи, 

сформульовано мету, завдання, об’єкт, предмет дослідження, розкрито 

наукову новизну та практичну значущість отриманих результатів. Наведено 

дані щодо апробації результатів дослідження та їх висвітлення у наукових 

публікаціях.  

У першому розділі проаналізовано сучасний стан досліджень за 

тематикою роботи. Зроблено огляд публікацій, проаналізовано методи 

паралельного програмування при моделюванні та прогнозування у задачах 

механіки твердого тіла. При застосуванні методу скінченних елементів 

процес розв’язування задачі складається з наступних етапів: формування 

вихідних даних; формування і розв’язування системи рівнянь; процедура 

виведення результатів. Для підвищення продуктивності паралелізації 

методу скінченних елементів використовуються різні підходи: використання 

модифікованих алгоритмів систем рівнянь, застосування декомпозиції 

розрахункової області. В кожному випадку виникає необхідність 

забезпечення додаткових граничних умов збіжності методу. У більшості 

існуючих пакетів прикладних програм методу скінченних елементів 

розрахунок проводиться за традиційною послідовною схемою. 

Паралелізація обчислювальних процесів для вже існуючої архітектури 

програмного забезпечення потребує розробки алгоритмів використання 

паралельних обчислень на етапі формування систем розв’язувальних 



  

рівнянь. 

У другому розділі розглянуто особливості побудови розв’язувальних 

рівнянь, що описують процеси деформування під дією силових та теплових 

навантажень. На основі співвідношень тривимірної теорії пружності та 

термопружності ізотропних та анізотропних тіл побудовано матриці 

жорсткості та теплопровідності скінченного елемента. Розроблена методика 

є універсальною і має ряд особливостей, а саме: незалежність порядку 

розв’язувальних рівнянь від структури шаруватих тіл; можливість завдання 

значень відповідних теплофізичних характеристик ізотропних або 

анізотропних шарів шаруватих тіл; можливість використання тривимірних 

скінченних елементів при моделюванні фізико-механічних процесів, що 

відбуваються в конструкціях довільної геометричної форми за реальних 

умов експлуатації. Застосування запропонованої методики дозволяє 

вирішувати задачі термомеханіки конструкцій у тривимірній постановці.  

У третьому розділі розроблено підхід до використання паралельних 

обчислень в методі скінченних елементів в рамках підсистем пакету 

прикладних програм “МІРЕЛА+”. Запропоновано методику паралелізації 

обчислення компонентів матриць систем розв’язувальних рівнянь 

скінченого елементу. Розроблено і реалізовано алгоритм паралельного 

обчислення матриці жорсткості скінченного елемента для задач пружного 

деформування конструкцій, а також процедуру обчислення параметрів 

напруженого стану за результатами скінченно-елементного розв’язку. 

Розроблено алгоритми розв’язку нелінійних задач механіки та задачі 

термопружності з використанням паралельних обчислень.  

У четвертому розділі наведено розв’язки практичних задач пружності 

та термопружності. Розглянуто рішення для шаруватих конструкцій з 

анізотропними шарами. Для розв’язку зв’язаної задачі термопружності 

шаруватої анізотропної конструкції отримані співвідношення для 

визначення теплофізичних параметрів шарів. Обчислено напружено-



  

деформований стан конструкцій за традиційною схемою та з використанням 

паралельних обчислень. Досліджено вплив використання паралельних 

технологій на продуктивність скінченно-елементного розв’язування задач 

механіки.  

У висновках наведено наукову новизну роботи, її практичну 

значущість і перспективи подальшого розвитку. 

У дисертаційній роботі отримано такі наукові результати: вперше 

розроблено алгоритми паралельних обчислень матриць жорсткості 

скінченних елементів на основі моментної схеми скінченних елементів для 

задач пружності; вперше розроблено паралельні алгоритми обчислення 

матриць теплопровідності для розв’язання задач теплопровідності; 

отримали подальший розвиток алгоритми паралельних обчислень у 

застосуванні до розв’язування лінійних та нелінійних задач; вперше 

розроблено застосунок з використанням алгоритмів паралельних обчислень 

в рамках пакету прикладних програм “МІРЕЛА+” для розв’язання задач 

термопружності конструкцій. 

Програмну реалізацію наведеної методики розв’язування задач 

написано мовою програмування Fortran 2018 на основі Intel Fortran Compiler 

з використанням бібліотеки паралельного програмування в системах зі 

спільною пам'яттю OpenMP.  

Ключові слова: метод скінченних елементів, моментна схема 

скінченних елементів, паралельні обчислення, напружено-деформований 

стан, термопружність, шаруваті конструкції. 
 

  



  

ABSTRACT 

 

Kozub, V. Yu. Finite element analysis using parallel technologies. 

Qualifying scientific work on the rights of a manuscript. 

Dissertation for the Doctor of Philosophy degree. Speciality: 122 – 

Computer Science. Zaporizhzhia National University of the Ministry of Education 

and Science of Ukraine, Zaporizhzhia, 2023. 

The introduction justifies the choice of the dissertation topic, formulates the 

purpose, tasks, object, subject of the research, reveals the scientific novelty, and 

practical significance of the obtained results. Data on the validation of research 

results and their presentation in scientific publications are provided. 

In the first chapter, the current state of research in the field is analyzed. A 

review of publications is conducted, and parallel programming methods in 

modeling and forecasting in solid mechanics problems are considered. The finite 

element method involves the following stages: input data preparation; system of 

equations formation and solution; output of results. Various approaches are used 

to enhance the parallelization performance of the finite element method: modified 

algorithms for equation systems and computational domain decomposition. Each 

case requires additional convergence boundary conditions for the method. Most 

existing finite element method software packages follow a traditional sequential 

calculation scheme. Parallelizing computational processes for existing application 

architecture requires the development of algorithms for parallel computations 

during the formation of solution system equations. 

In the second chapter, the construction of solution equations describing 

deformation processes under the influence of force and thermal loads is 

considered. Stiffness and thermal conductivity matrices of a finite element are 

constructed based on the three-dimensional theory of elasticity and 

thermoelasticity for isotropic and anisotropic materials. The developed method is 

universal and has unique features, such as independence of the order of solution 



  

equations on the structure of layered bodies, the ability to specify values of 

corresponding thermophysical characteristics for isotropic or anisotropic layers, 

and the use of three-dimensional finite elements in modeling physical-mechanical 

processes in structures of any geometric shape under real operating conditions. 

The proposed method allows solving thermo-mechanical problems of 

constructions in three dimensions. 

In the third chapter, an approach to using parallel computations in the finite 

element method within the subsystems of the "MIRELA+" software package is 

developed. A method for parallelizing the calculation of components of stiffness 

matrices for a finite element is proposed and implemented. An algorithm for 

parallel computation of the stiffness matrix for problems of elastic deformation of 

structures and a procedure for computing stress state parameters based on finite 

element solutions are developed. Algorithms for solving nonlinear mechanics 

problems and thermomechanical problems using parallel computations are also 

developed. 

In the fourth chapter, solutions to practical elasticity and thermoelasticity 

problems are presented. Solutions are considered for layered structures with 

anisotropic layers. For solving the coupled thermoelasticity problem of a layered 

anisotropic structure, relationships for determining the thermophysical parameters 

of layers are derived. The stress-strain state of structures is calculated using both 

traditional and parallel computing schemes. The influence of parallel technologies 

on the productivity of finite element solution of mechanics problems is 

investigated. 

The conclusions highlight the scientific novelty, practical significance, and 

prospects for further development of the work. 

Scientific results obtained in the dissertation: algorithms for parallel 

computations of stiffness matrices of finite elements based on the moment scheme 

of finite elements for elasticity problems are developed; parallel algorithms for 

computing thermal conductivity matrices for heat conduction problems are 



  

developed for the first time; parallel computation algorithms for linear and 

nonlinear problems gained further development; application using parallel 

computation algorithms within the "MIRELA+" software package for solving 

thermoelasticity problems of constructions is developed for the first time. 

The software implementation of the proposed problem-solving method is 

written in Fortran 2018 using the Intel Fortran Compiler and OpenMP parallel 

programming library for shared memory systems. 

Keywords: finite element method, moment scheme of finite elements, 

parallel computing, stress-strain state, thermoelasticity, layered structures. 
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ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ 
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HPC – High-Performance Computing; 
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OpenCL – Open Computing Language; 

OpenMP – Open Multi-Processing. 
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ВСТУП 

Актуальність теми дисертаційного дослідження. Сучасний 

розвиток машинобудування, будівництва, приладобудування, аерокосмічної 

техніки та інших галузей виробництва потребує новітніх технологій 

проєктування нових конструкцій. Одним з головних завдань конструювання 

є аналіз міцності та довговічності елементів конструкцій, що потребує 

розв’язання задач механіки твердого тіла. Для тривимірних конструкцій 

використовуються різні чисельні методи, серед яких найбільше поширення 

отримав метод скінченних елементів (МСЕ). 

На сьогоднішній день існує достатньо велика кількість різноманітних 

програмних застосувань, що реалізують розрахунки з використанням МСЕ. 

Створення нових матеріалів та конструкцій потребують розробки нових 

математичних моделей, що враховують фізико-механічні властивості, 

особливості деформування в експлуатаційних умовах навантаження. 

Зростання складності задач потребує розробки ефективних методів 

розв’язування та більш продуктивних комп’ютерних систем. 

Використання багатоядерних процесорів для скінченно-елементного 

аналізу потребує створення алгоритмів розрахунку, що забезпечують повне 

завантаження процесора і тим самим зменшити час розв’язку. 

Таким чином, для підвищення ефективності використання наявних 

обчислювальних ресурсів актуальною задачею є розробка паралельних 

алгоритмів скінченно-елементного аналізу.  

Мета і задачі дослідження – розробка ефективних методів 

визначення напружено-деформованого стану тривимірних твердих тіл з 

довільними умовами закріплення, які знаходяться під дією силового та 

термічного навантаження. 

Для досягнення мети в роботі на основі  аналізу літературних джерел, 



14  

що розкривають сучасний стан досліджень в обраній області, поставлені 

наступні завдання: 

– розробити методику розв’язування лінійних і нелінійних задач 

механіки з використанням паралельних технологій; 

– на основі використання паралельних обчислень розробити 

методику формування систем розв’язувальних рівнянь методу скінченних 

елементів; 

– розробити методику розв’язування задач теплопровідності 

тривимірних ізотропних та анізотропних твердих тіл; 

– розробити програмне забезпечення для реалізації розроблених 

підходів розпаралелювання обчислень. 

Об’єкт дослідження є процес розробки програмного забезпечення  

для скінченно-елементного аналізу напружено-деформованого стану 

тривимірних твердих тіл. 

Предметом дослідження є технології паралельних обчислень для 

моделювання напружено-деформованого стану на основі методу 

скінченних елементів 

Методи дослідження базуються на застосуванні методів 

математичного моделювання, обчислювальної математики та паралельних 

обчислень. 

Наукова новизна одержаних результатів: 

– вперше розроблено алгоритми паралельних обчислень матриць 

жорсткості скінченних елементів на основі моментної схеми скінченних 

елементів для задач пружності; 

– вперше розроблено паралельні алгоритми обчислення матриць 

теплопровідності для розв’язання задач теплопровідності; 

– отримали подальший розвиток алгоритми паралельних обчислень у 

застосуванні до розв’язування лінійних та нелінійних задач; 
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– вперше розроблено застосунок з використанням алгоритмів 

паралельних обчислень пакету прикладних програм “МІРЕЛА+” для 

розв’язання задач термопружності конструкцій. 

Практичне значення отриманих результатів полягає в розробці 

методики і програмних засобів для визначення напружено-деформованого 

стану конструкцій 

Апробація результатів дисертації. Основні результати, що отримані 

у дисертаційному дослідженні, викладено в доповідях, виголошених на 

міжнародних конференціях: “Dynamical system modeling and stability 

investigations” DSMSI-2019 (Київ, 22-24 травня 2019 р.); “Актуальні 

проблеми інженерної механіки” (м. Одеса 12-14 трав. 2021 р.); “Topical issues 

of modern science, society and education”. (Kharkiv, 5-7 September, 2021); 

“Modern ways of solving the latest problems in science”. (Varna, Bulgaria. 22-23 

September 2022); всеукраїнській конференції “Актуальні проблеми 

математики та інформатики” (м. Запоріжжя, 2019 р.). 

Публікації. За результатами досліджень опубліковано п’ять наукових 

робіт, що висвітлюють основний зміст дисертації, серед яких одну статтю 

опубліковано у міжнародному виданні. Чотири статті опубліковано у 

наукових виданнях України, що включено до Переліку наукових фахових 

видань України, в яких можуть публікуватися результати дисертаційних 

робіт на здобуття наукових ступенів доктора наук, кандидата наук та ступеня 

доктора філософії; також опубліковано п’ять робіт апробаційного характеру. 

Структура і обсяг дисертації. Дисертаційна робота складається з 

анотації, вступу, чотирьох розділів, висновків, списку використаних джерел, 

додатку. Загальний обсяг роботи складає 128 сторінок. Робота містить 41 

рисунок, список використаних джерел із 170 найменувань.  
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1 АНАЛІЗ СТАНУ ПРОБЛЕМИ 

1.1 Метод скінченних елементів в задачах механіки твердих тіл  

Необхідність в дослідженні поведінки інженерних конструкцій 

виникає в різноманітних галузях сучасного будівництва, 

автомобілебудування, ракетобудування та ін. Для прогнозування 

працездатності та довговічності конструкцій, що проєктуються, 

використовуються різні підходи. Для скорочення вартісного 

експериментального дослідження конструкцій зазвичай використовуються 

математичні моделі і відповідні обчислювальні експерименти. Проте для 

підготовки математичних моделей необхідні дані про фізико-механічні 

властивості матеріалу конструкції, проєктні вимоги до експлуатаційних 

режимів і т. ін.  

Методи і програми для чисельного вирішення завдань механіки 

деформованого твердого тіла розвиваються упродовж багатьох десятиліть. 

Розвиток комп'ютерних технологій зробив обчислювальний експеримент 

потужним і ефективним способом рішення проблем прикладної математики. 

Поява нових математичних моделей і обчислювальних методів, збільшення 

об'єму і складності сучасних обчислювальних завдань, роблять необхідним 

створення нових засобів автоматизації побудови комп'ютерних моделей і 

підготовки початкових розрахункових даних. 

Використання сучасної обчислювальної техніки для вирішення 

завдань математичного моделювання робить необхідним розробку і 

впровадження комплексного підходу до їх рішення. Програмні засоби, що 

розробляються для цієї мети, мають забезпечувати підтримку різних видів 

обчислювальних процесів. Ці види включають в себе створення 

геометричних моделей області розв'язання завдань, генерацію 
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обчислювальних сіток, складання систем сіткових рівнянь на основі 

математичних моделей, а також виконання обчислень та обробки 

результатів. 

Геометричне моделювання і обчислювальна топологія, в багатьох 

випадках, є ключовими складовими систем автоматизованого проєктування 

(САПР). Питання, пов'язані з їх моделюванням і обчисленнями, є предметом 

постійного дослідження [63, 74].  

Математичні моделі механічних процесів частіше за все 

формулюються у вигляді диференціальних або інтегральних рівнянь. Для 

розв'язання практичних задач застосовуються чисельні методи, найбільше 

поширення з яких отримав метод скінченних елементів (МСЕ). Метод 

скінченних елементів дозволяє будувати геометричні моделі об’єктів, 

формулювати математичне описання фізичних процесів.  

МСЕ є ефективним чисельним методом дослідження явищ і процесів 

у багатьох галузях. Особливо широко МСЕ використовується для 

розв’язання задач механіки. Він дозволяє з високим ступенем точності та 

ефективністю визначати напружено-деформований стан в умовах лінійного 

та нелінійного деформування, визначати в'язкопружні та пластичні 

деформації, розв’язувати задачі термомеханіки, стійкості, руйнування при 

статичних та динамічних умовах навантаження. 

Цілеспрямований розвиток МСЕ отримав у 60-х роках минулого 

століття одночасно у Німеччині, США, Японії. В Україні він почав бурхливо 

розвиватися з 1970 року у Проблемній науково-дослідній лабораторії 

тонкостінних просторових конструкцій Київського інженерно-будівельного 

інституту завдяки роботам науковців Д.В. Вайнберга, О.С. Сахарова, 

В.А. Баженова, В.В. Киричевського та ін. 

МСЕ відноситься до груп наближених методів, таких як метод 

скінченних різниць (МСР), варіаційно-різницеві методи (ВРМ), метод 

Ритца, метод Бубнова-Галеркіна та ін. В його основі лежать варіаційні 
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принципи. Перехід від реального об'єкту до дискретної розрахункової 

моделі здійснюється з позиції механіки шляхом поділу суцільного 

середовища на ряд скінченних елементів (СЕ) з дотриманням спеціальних 

умов. Завдання апроксимуючих (координатних) функцій проводиться 

всередині окремих СЕ, що є кращим, ніж їх завдання у ВРМ для всього 

об'єкта, що досліджується, в цілому. 

Ці переваги МСЕ послужили поштовхом для його подальшого 

розвитку. До теперішнього часу вийшла велика кількість наукових 

публікацій, присвячених розвитку МСЕ та дослідження різних явищ 

механіки та фізики. З основними положеннями МСЕ можна ознайомитися у 

опублікованих наукових роботах вітчизняних авторів В.А. Баженова [2, 110, 

157], О.С. Сахарова [35, 36, 53, 67, 68, 115], В.В. Киричевського [31-38, 52, 

68, 153], В.О. Толока [11, 37, 38, 73, 153], В.Г. Пискунова [60, 61], 

В.К. Цихановського [2, 79], В.З. Грищака [1, 22,23], С.І. Гоменюка [1, 10, 11, 

18, 73, 80, 81, 82, 106, 109, 133, 141], С.М. Гребенюка [1, 5, 6, 18, 22, 38, 40, 

109, 141, 145], О.В. Кудіна [28, 109, 133], І.О. Астіоненка [75-78, 108, 151], 

С.В. Чопорова [80-83, 106, 109, 133], О. Зенкевича [25], Л. Сегерлінда [69]  

та ін. 

Практичне використання МСЕ у задачах математичного моделювання 

робить необхідним розробку і впровадження комплексного підходу до їх 

рішення, а це неможливе без застосування обчислювальної техніки, тому що 

доводиться мати справу з обчисленням матриць великих розмірів, від 50000 

рівнянь та більше. Для реалізації МСЕ необхідно створення потужних 

програмних комплексів. 

Серед таких перших розробок стосовно вирішення лінійних та 

нелінійних задач статики, динаміки, коливань та стійкості складних 

конструкцій були створені обчислювальні комплекси ASKA [95], 

TITUS  [134], SESAM-69 [117], SAP [163], NASTRAN [104, 137, 159], 

TURBAN [140], AUTRA [30], ЛІРА [47], EFESYS [116], ADINA [100] та ін. 
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Надалі з розвитком комп'ютерної техніки, ці обчислювальні комплекси, 

вичерпали свої можливості та призвели до появи нових програмних 

комплексів другого покоління здатних вирішувати задачі складних 

комбінованих систем, та призначені для розрахунку просторових 

конструкцій на основі МСЕ, більшість з них є програмами загального 

призначення, що виникли раніше, модернізовані та не втратили свого 

значення на даний момент часу: ANSYS [94], STARDYNE [112], SAP [163], 

ЛІРА [47], FORTU [73], MIРЕЛА+[52], ABAQUS [89], та інші. Структури 

існуючих обчислювальних комплексів мають значну схожість. В них можна 

виділити наступні блоки: дискретизація об'єкту; завдання механічних 

характеристик матеріалу, граничних умов та навантажень; формування 

матриці жорсткості СЕ та глобальної системи вирішальних рівнянь; 

вирішення системи лінійних та нелінійних алгебраїчних рівнянь; вивід 

результатів розрахунку розв'язувальної задачі. 

З ростом обчислювальних можливостей, високопродуктивних 

обчислювальних кластерів та суперкомп'ютерів, при моделюванні фізичних 

явищ в інженерії та науці для прискорення розрахунків стали 

використовувати поєднання МСЕ з паралельними обчисленнями. На даний 

час на основі МСЕ створено велику кількість великих і малих 

обчислювальних програм, і їх кількість продовжує швидко збільшуватися. 

Починаючи з 1950 р. почався цілеспрямований розвиток МСЕ, 

пов'язаний з вивченням статичних властивостей СЕ різної конфігурації та 

розмірності. Причина настільки пізньої появи інтересу до МСЕ пояснюється 

тим, що, з одного боку, у період, коли чисельним методам не приділялося 

достатньої уваги, найбільш дієвим апаратом дослідження континуальних 

систем вважалися диференціальні рівняння, з іншого боку, складання та 

вирішення великих систем рівнянь складало труднощі для ручного 

розрахунку до яких обов'язково приводив МСЕ. Коли ж з'явилися 

комп'ютери та інтерес до чисельних методів підвищився, відкрився шлях 
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наближеного розв'язання диференціальних рівнянь методом скінченних 

різниць (МСР). 

Виниклі ускладнення значно пізніше призвели до дискретизації 

завдання на більш ранніх етапах. Розвиток отримав ВРМ. І вже дещо пізніше 

почав розвиватися МСЕ. 

Метод скінченних елементів почав свій розвиток в двох напрямках. З 

одного боку, він застосовувався та розвивався як метод будівельної 

механіки, з іншого – як варіаційно-різницевий метод (ВРМ). У роботі 

Р. Куранта [111] запропоновано різновид ВРМ на прикладі трикутного СЕ У 

працях В.Г. Корнєєва [46], JI.О. Розіна [65] показано, що найпоширеніша 

форма СЕ, що склалася до цього моменту, і ВРМ, запропонований у [111], 

збігаються. Це відкрило великі можливості для математичного дослідження 

та обґрунтування МСЕ на основі добре розробленого апарату доказу 

збіжності ВРМ. 

Першою основною роботою, у якій МСЕ отримав своє остаточне 

обґрунтування, є робота M.I. Turner, RW. Clough, Н.С. Martin, L.I. Торр [154], 

опублікована в J. Aeronaut, № 9 в 1956 році, в якій були розглянуті трикутні 

та чотирикутні СЕ для плоскої задачі теорії пружності, далі зазначимо 

роботи I.H. Argyris [95, 96], R.W. Clough [107], в яких вперше проводиться 

завдання функцій, що апроксимують переміщення або напруження по 

області СЕ, із суто фізичних міркувань і вперше виводиться назва 

запропонованого методу – МСЕ. 

Після виходу перших робіт кількість публікацій з МСЕ почали різко 

зростати і в основному в зарубіжному друку. Намітилися три підходи 

вирішення завдань методом скінченного елементу. Найбільшого поширення 

набув МСЕ разом із методом будівельної механіки – методом переміщень 

(на відміну методу сил і змішаного методу), який дозволяє зменшити 

труднощі; пов'язані із обумовленням граничних контактних умов. Спочатку 

основні співвідношення МСЕ будувалися без використання варіаційних 
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принципів, що обмежувало його універсальність при дослідженнях областей 

зі складною геометрією та граничними умовами. У ранніх роботах (1950 – 

1960 рр.) МСЕ носив назву методу прямих жорсткостей. 

Пізніше у роботах Р. Галлагера [9], Р. Мелоша [139], Т. Піана [86], які 

вийшли майже одночасно наприкінці 1963 р. початку 1964 р., було 

встановлено варіаційна природа МСЕ, і навіть викладено різні 

формулювання побудови матриць жорсткості скінченних елементів, з 

принципу віртуальних робіт або з умови мінімуму потенційної енергії у 

стані рівноваги. 

Розглядаючи послідовність проведення досліджень з МСЕ, 

зауважимо, що на початку розв'язання задачі потрібно встановити форму 

СЕ. З цього погляду у подальших роботах основна увага приділялася 

дослідженню властивостей СЕ. Варіювалися форми СЕ, розглядалися прості 

двовимірні прямокутні та трикутні елементи, тривимірні призматичні та 

пірамідальні елементи, також СЕ, що мають у плані довільні контури з 

криволінійними сторонами та поверхнею довільного вигляду (циліндричної, 

подвійної кривизни та ін.) [25]. Тривимірні елементи вибиралися також як 

косокутного багатогранника з криволінійними ребрами і плоскими гранями. 

Обговорювалися питання, пов'язані із призначенням “контактних” вузлів 

взаємозв'язку скінченних елементів. 

Належна увага приділялася призначенню числа ступенів вільності 

елементів та вибору виду функцій, що апроксимують поле переміщень за 

об’ємом (області) СЕ. В роботах А.Н. Хомченка та О.І. Астіоненка 

представлені  дослідження методів апроксимації в МСЕ [75-78]. Завдання 

форм переміщень є насправді вибором координатних функцій методу Ритца. 

Механічний підхід до трактування координатних функцій у МСЕ ряду 

перевагами часто призводить до порушень збіжності рішення, тому що при 

цьому опускалася з розгляду та обставина, що функція переміщень у точках 

контактах двох сусідніх елементів повинна забезпечувати безперервність 
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переміщень та кутів повороту. Р.Д. Мелош одним із перших запропонував 

задовольняти умові безперервності переміщень суміжних елементів. Ця ідея 

розвивалася в роботі [24], де форми переміщень забезпечували 

безперервність кутів повороту лініями контакту СЕ. Маклей встановив, що 

функція переміщень СЕ є повним многочленом з порядком n якщо похибка 

величин, що входять в енергію деформації, має порядок hn (h - характерний 

розмір елементу). Це становище корисне в оцінці порівняльної збіжності CЕ 

різних типів. Ф. Богнер, Р. Фокс, Л. Шміт [101] задовольнили вимоги 

повноти для поліноміального розподілу переміщень у результаті 

запровадження повороту лініями контакту CЕ додаткового ступеня 

вільності. 

Ряд дослідників підкреслює, що для правильного опису напруженого 

стану об'єкта системи роздільні функції повинні апроксимувати як 

переміщення, пов'язані з деформацією, так і переміщення тіла та окремих 

його частин при жорстких зміщеннях. Врахування форм переміщень як 

жорсткого тіла можна реалізувати двома шляхами: або включати форми 

переміщень як твердого тіла безпосередньо в апроксимуючі функції 

переміщень, або після отримання матриці жорсткості на її основі довільних 

форм переміщень коригувати її. 

Кентін [105] розробив метод обліку руху СЕ як жорсткого тіла, що 

полягає у корекції матриці жорсткості, отриманої без безпосереднього 

використання форм переміщень жорсткого тіла. Запропонований метод є 

загальним та може бути застосований до будь-якого елементу. Критерієм 

обліку форм руху як твердого цілого є зниження сліду відкоригованої 

матриці жорсткості. 

Нехтування ступенями вільності, що допускають переміщення об'єкту 

та окремих його елементів як жорсткого цілого, у ряді важливих з точки зору 

додатків випадків (розрахунок конструкцій при великих деформаціях, 
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рішення лінійних задач при деяких видах граничних умов та ін.) призводить 

до поганої збіжності методу.  

Якщо розглядати МСЕ, для якого всередині СЕ переміщення 

апроксимуються, наприклад, поліноміальними функціями, а контакт на 

межах елементів здійснюється з урахуванням дотримання умов 

нерозривності, то цей варіант МСЕ має повільну збіжність в силу того, що 

поліноміальні функції не включали складові, що описують жорсткі усунення 

СЕ. Як випливає з робіт О.С. Сахарова [67, 68], цей ефект суттєвіше 

проявляється при використанні криволінійних СЕ та облік жорстких зсувів 

СЕ слід розглядати не як необхідну умову збіжності, а як важливий засіб 

підвищення ефективності МСЕ при розрахунку тіл криволінійної форми. 

У процесі експлуатації стандартної схеми МСЕ у формі методу 

переміщень, поряд із проблемою жорстких зміщень СЕ, було помічено й 

іншу негативну властивість матриць жорсткості, що має нині назву “ефекту 

хибного зсуву”. Суть його полягає в тому, що при згинанні тонких пластин 

і оболонок, що моделюються тривимірними СЕ, значно зростають похибки, 

пов'язані з появою ефективних деформацій зсувів. 

Для усунення цих двох недоліків стандартних схем МСЕ у формі 

методу переміщень О.С. Сахаровим було розроблено моментну схему 

скінченних елементів (МССЕ) [67]. Ця схема дозволяє врахувати основні 

властивості жорстких зміщень як ізопараметричних так і для криволінійних 

СЕ ізотропних пружних тіл. Суть її полягає у відкиданні певних членів 

розкладання деформації, що реагують на жорсткі зсуви і на фіктивні зсувні 

деформації, що з'являються. При цьому точні рівняння зв'язку деформації та 

переміщень замінюються наближеними. 

Зазвичай наближені методи ґрунтуються на дискретизації 

статистичних і математичних моделей розв'язуваних задач. У методах 

дискретизації суцільна система, що розглядається, з нескінченним числом 

ступенів вільності апроксимується системою з скінченним числом ступенів 
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вільності. Диференціальні та інтегральні рівняння, що описують 

апроксимуючі функції мають високі порядки, підібрати які для складних 

граничних умов не завжди легко. Матриця системи рівнянь у МСЕ завжди 

симетрична і має стрічкову структуру, а у методі Рітца вона, зазвичай, 

повністю заповнена, завдяки чому при застосуванні останньої набагато 

більше потрібно машинного часу формування та розв'язання системи 

рівнянь. 

До розглянутих методів можна додати і такий метод дискретизації, як 

метод зважених нев'язок (МЗН), що є відправною точкою для методу 

скінченних елементів, причому в МЗН варіаційний принцип не 

використовується. МЗН залежно від виду вагових функцій (базисні функції 

задаються аналогічно методу скінченних елементів) поділяється на метод 

колокації (вагова функція вибирається у вигляді дельта-функції і метод 

називається поточковою колокацією на відміну від методу колокації по 

підобластях, де вагові функції рівні одиниці в деякій підобласті і нулю - в 

іншій частині області) і метод Галеркіна (тут вагові функції приймаються 

такими, що збігаються з базисними). 

Той чи інший метод дискретизації вибирається залежно від класу 

розв'язуваних завдань. Наприклад, МСР широко використовується в 

динаміці рідини і газу, теорії пружності, пов'язаної з тимчасовими 

координатами, а МСЕ найбільш застосовний в механіці деформованого 

твердого тіла і будівельній механіці, в стаціонарних задачах теплопередачі, 

гідродинаміки. 

Найбільшого поширення МСЕ набув у формі методу переміщень, 

який ґрунтується на варіаційному принципі Лагранжа. Для поліпшення 

збіжності методу, оскільки він є чисельним, було запропоновано деякі 

модифікації методу, пов'язані зі зниженням точності інтегрування, 

коригування матриці жорсткості тощо. Однак більшого розвинення набула 

МССЕ, для в'язкопружних тіл [32]. Метод скінченних елементів який 
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використовує у своїй основі варіаційні принципи став ефективнішим при 

розрахунку конструкцій з еластомерів. У МСЕ перехід до дискретної 

розрахункової схеми здійснюється, на відміну від розглянутих методів, з 

позиції механіки. Об'єм, що займається тілом, розбивається на СЕ 

найчастіше чотирикутної або трикутної форми, з'єднані між собою в 

окремих вузлах. 

З математичної точки зору при забезпеченні нерозривності 

вирішальних функцій та використанні варіаційних принципів у побудові 

залежності між зусиллями та переміщеннями для скінченних елементів 

МСЕ можна трактувати як метод Ритца. Істотна відмінність між МСЕ і 

методом Ритца - завдання координатних функцій переміщень, що дозволяє 

зменшити труднощі, пов'язані з існуючих умов. МСЕ базується на заміні 

об'єкта, що досліджується, сукупністю дискретних елементів, з'єднаних між 

собою в окремих вузлах. Статичні властивості кожного елементу 

визначаються на основі гіпотез, що вводяться, а шукані зусилля - з умови 

кінематичної (статичної) сумісності системи. Наведене трактування 

зумовлює таку послідовність проведення дослідження з МСЕ: 

1) призначення розрахункових вузлів, у яких визначаються величини 

роздільної здатності функції та розчленування досліджуваного об'єкта на СЕ 

бажаної форми; 

2) встановлення залежності у “контактних” вузлах елемента, тобто,  

побудова матриць жорсткості; 

3) складання системи рівнянь алгебри, що виражають кінематичну 

(статичну) сумісність досліджуваного об'єкта; 

4) вирішення складних рівнянь та обчислення значень роздільної 

здатності в розрахункових вузлах; 

5) визначення компонентів необхідного стану досліджуваної системи 

на основі знайдених значень роздільної здатності. 
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Найбільш важливими є перші два пункти, що визначають кількість і 

розташування розрахункових вузлів, формул скінченних елементів та 

гіпотези про розподіл переміщень, напружень або температури в області СЕ. 

Від раціонального вирішення цих питань залежить успіх вирішення 

завдання загалом. 

При проєктуванні конструкцій, які діють в умовах високого теплового 

та механічного навантаження з високими техніко-економічними 

показниками, виникає потреба в передбаченні фізико-механічних 

характеристик та показників якості однорідних та композиційних матеріалів 

у тривимірному аспекті. 

Для розв'язання тривимірних задач використовуються різні форми СЕ, 

такі як паралелепіпеди, тетраедри, трикутні призми і т. ін. Проте, у випадку 

конструкцій з тонкими шарами, такими як клейовий прошарок або зовнішні 

шари тривимірної конструкції, застосування тривимірних СЕ може бути 

складним, оскільки необхідно забезпечити співмірність розмірів елементів. 

Для подолання цієї невідповідності було розроблено різні типи 

скінченних елементів, спрямованих на аналіз шаруватих композитних 

конструкцій. Результати аналізу дозволяють виділити чотири основні групи 

СЕ, призначених для розрахунку цього класу конструкцій. 

Перша група включає в себе скінченні елементи, у яких кількість 

невідомих залежить від кількості шарів, що може призвести до вирішення 

систем рівнянь високого порядку. Для забезпечення ефективності та 

точності обчислень у тривимірних оболонках, інші типи скінченних 

елементів орієнтовані на класи шаруватих композитних конструкцій. 

Наприклад, розроблено гібридні скінченні елементи, які мають ступені 

вільності, відповідні планарним переміщенням і нормальним переміщенням 

[51]. Інші методи включають в себе гіпотезу ламаної для шаруватих пакетів 

та спеціальні елементи для розрахунку осесиметричних оболонок [70, 71]. 



27  

Другу групу складають спеціалізовані двовимірні скінченні елементи, 

спрямовані на розрахунок тришарових композитних конструкцій. У роботі 

[39] розглядаються два види трикутних скінченних елементів для 

тришарових пластин. Один тип скінченних елементів має матрицю 

жорсткості, побудовану на основі певного закону розподілу компонент 

переміщення в окремих шарах елементів. У іншого типу скінченних 

елементів матриця жорсткості формується на основі передбачуваного 

закону зміни напружень. 

У роботі [58] представлений розрахунок тришарової пластини з 

легким заповнювачем на основі скінченних елементів. Особливість цього 

підходу полягає у низькому степені поліномів, які апроксимують 

переміщення по області СЕ. Інші типи скінченних елементів для аналізу 

тришарових композитних конструкцій описані в роботі [138]. 

Третю групу скінченних елементів включає двовимірні СЕ для 

шаруватих композитних оболонок і пластин, побудовані на основі 

узагальненої гіпотези Тимошенко-Рейсснера для всього пакету шарів, тобто 

гіпотези прямої. Ці СЕ будуються аналогічно елементам однорідної 

конструкції. Наприклад, багатошарова анізотропна пластина з композитних 

матеріалів перетворюється у квазіоднорідну, використовуючи гіпотези 

Тимошенко-Рейсснера для побудови ізопараметричних чотирикутних 

елементів [60]. Анізотропні шаруваті системи на основі скінченних 

елементів розглянуті у роботі [119]. Також у роботі [143] побудовано 

трикутний СЕ з дев'ятьма ступенями вільності на основі гіпотези 

Тимошенко-Рейсснера. 

Проте підхід, який використовується при побудові третьої групи 

скінченних елементів, не дозволяє враховувати нелінійну зміну 

переміщення по товщині пакету. 
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Четверту групу складають створення тривимірних скінченних 

елементів на основі моделей, які враховують нелінійний закон зміни 

переміщень вздовж товщини шарів. 

Наприклад, у роботі [64] розроблено та досліджено прямокутний 

скінченний елемент для багатошарової ортотропної оболонки, 

використовуючи модель, яка враховує деформації поперечного зсуву в 

шарах трансверсально-ізотропної плити. У цьому СЕ в кожному вузлі 

призначено дев'ять ступенів вільності: два, які пов'язані з планарними 

переміщеннями та функціями зсуву, і три, що відповідають нормальним 

переміщенням та функціям обтиснення. 

Також було розроблено двовимірну схему для розрахунку 

багатошарових трансверсально-ізотропних пластин, яка враховує зміни 

нормальних переміщень від безпосереднього впливу зовнішніх 

навантажень. Цей підхід було розроблено В.Г. Пискуновим і представлено 

у роботі [61]. 

Важливим внеском у вивчення та розуміння поведінки композиційних 

матеріалів є робота J. Barber [99], де досліджуються особливості 

моделювання ряду ефектів, які є характерними для композиційних 

матеріалів. Ці ефекти включають в себе крайові ефекти, розшарування 

матеріалу, властивості в'язкості та пружності, і інші. Дослідження 

включають чисельні обчислення, які проводяться з використанням програм 

ANSYS і MATLAB. Ці програми широко використовуються для чисельного 

моделювання і аналізу поведінки матеріалів та конструкцій. Результати цих 

розрахунків дозволяють краще розуміти та оцінювати поведінку 

композиційних матеріалів під впливом різних фізичних та механічних 

чинників. 

Всі ці розробки і методи дозволяють точно та ефективно 

розраховувати шаруваті композитні конструкції у тривимірному аспекті, що 

є важливим в інженерному проєктуванні. 
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Зростання потужності комп'ютерів та створення розподілених систем  

дозволили використовувати метод скінченних елементів для розрахунків 

великих моделей та задач. Для підвищення ефективності обрахунків 

виникає необхідність найбільш повно використовувати всі можливості 

обчислювальних ресурсів.  

 

1.2 Огляд паралельних технологій інженерних розрахунків 

Паралельність стала головним аспектом у сфері обчислювальних 

наук і інженерії завдяки росту обчислювальної потужності обчислювальних 

систем та збільшенню складності обчислювальних завдань. 

Починаючи з 1990-х років йде активна розробка паралельних версій 

програмних пакетів паралельних обчислень МСЕ та спеціалізованих 

програмних засобів для паралельного обчислення. Існує велика кількість 

технологій та підходів, які можна використовувати для паралельних 

обчислень у МСЕ: Message Passing Interface (MPI), Open Multi-Processing 

(OpenMP), Compute Unified Device Architecture (CUDA), Open Computing 

Language (OpenCL), Open Accelerators (ОpenACC), High-Performance 

Computing (HPC), Cloud Computing Clusters, а також різні фреймворки та 

бібліотеки, спеціально розроблені для паралельних обчислень у МСЕ, такі 

як PETSc, Trilinos, deal.II і багато інших. Вибір конкретної технології може 

залежати від специфіки завдання та доступних обчислювальних ресурсів. 

Великий вклад у розвиток паралельного обчислення у контексті 

методу скінченних елементів та важливих аспектів їх реалізації в 

обчислювальних науках внесли вітчизняні та закордонні науковці 

G. E. Karniadakis та R. M. Kirby [128], D. W. Walker та J. Dongarra [162], 

W. Gropp та E. Lusk [85, 121], В. В. Воєводін [8], С. І. Гоменюк [81, 82, 106, 

109], С. М. Гребенюк [106, 109], О. В. Кудін [28, 109], С. В. Чопоров [81, 82, 
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83, 106, 109] Г. М. Шило [84], S. H. Ju [125, 126], Дж. Ортега [57], 

А. В. Попов [62] та ін. 

Однією з основних технологій для реалізації паралельних програм в 

середовищі обчислювальних кластерів, масштабованих обчислювальних 

середовищ (МСЕ) та суперкомп'ютерів є бібліотека МРІ для паралельного 

обчислення та обміну даними між вузлами в паралельних та розподілених 

обчислювальних системах. Представимо деякі ключові аспекти 

використання MPI в МСЕ: 

Розподіл завдань: MPI дозволяє розподілити завдання між різними 

вузлами кластера або обчислювального середовища. Можна створити 

програму, де кожен вузол виконує свої обчислення та обмін даними з 

іншими вузлами за допомогою повідомлень. 

Паралельний обмін даними: MPI надає потужні функції для обміну 

даними між вузлами. Це особливо корисно в МСЕ, де завдання може бути 

розподілене на багато вузлів. MPI дозволяє ефективно обмінюватися даними 

між цими вузлами. 

Синхронізація: MPI також надає засоби для синхронізації обчислень 

між вузлами. Ви можете використовувати різні типи синхронізації, такі як 

бар'єри або точки синхронізації, для координації обчислень на різних вузлах. 

Масштабованість: MPI добре масштабується, що дозволяє 

використовувати його в МСЕ з великою кількістю вузлів та 

обчислювальною потужністю. 

Підтримка різних мов програмування: MPI має бібліотеки для 

багатьох мов програмування, включаючи C, C++, Fortran та ін., що робить 

його дуже універсальним для різних сценаріїв розробки. 

Діагностика та профілювання: MPI надає інструменти для 

діагностики та профілювання паралельних програм, що допомагає виявити 

проблеми та оптимізувати їх продуктивність. 
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У МСЕ MPI може бути використано для вирішення різних завдань, 

таких як чисельне моделювання, обробка даних, наукові обчислення та 

багато інших. Важливо розробляти програми з урахуванням архітектури 

обчислювального середовища та використовувати оптимізації MPI для 

досягнення найкращої продуктивності в даному середовищі. 

Перша версія стандарту для паралельного програмування MPI-1 

створена в 1994 р. Стандарт містив базовий набір функцій для паралельного 

програмування, включаючи можливості обміну даними між процесами, 

синхронізацію та керування процесами, визначав способи ініціалізації та 

завершення процесів, способи обміну даними, створення комунікаторів для 

групового обміну та багато інших основних функцій [121, 142, 162]. MPI-1 

відкрив двері для стандартизації паралельного програмування та зробило 

його більш доступним та інтероперабельним для різних обчислювальних 

платформ і реалізацій. Відтоді стандарт MPI продовжив розвиватися, 

додавши багато нових можливостей та функціональностей в пізніших 

версіях MPI-2 та MPI-3 [103, 121]. В роботах [102, 113, 164, 167] 

пропонуються  огляд типів паралелізму, характеристик, етапів, підходів до 

паралельного алгоритму та різних застосувань паралельних обчислювальних 

технологій з розділеною пам’яттю.  

Використання OpenMP у МСЕ спрощує створення паралельних 

версій програм та покращує їх продуктивність. Це стандарт для 

багатопотокового програмування на мовах програмування C, C++ та Fortran. 

Починаючи з 2000-х років, OpenMP став популярним стандартом для 

створення паралельних програм, які можуть виконуватися на багатоядерних 

архітектурах та багатопроцесорних системах, і вирішувати обчислювальні 

завдання швидше. У МСЕ часто потрібно вирішувати великі системи 

лінійних або нелінійних рівнянь, що вимагає ітераційних методів. OpenMP 

для паралельного виконання ітерацій використовує бібліотеки deal.II та 

libMesh  при розпаралелюванні обчислень. 
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Питання високопродуктивних обчислень та їх вплив на розвиток 

науки та інженерії розглянуто в роботі [98]. Представлено нові ідеї та 

рішення для високопродуктивних обчислень, включаючи використання 

бібліотеки OpenMP та розробку бібліотеки Hydra для гетерогенних 

архітектур, створення масштабованого генератора матриць SMG2S для 

порівняння різних розв'язувачів, розробку набору бенчмарків PAMPAR для 

тестування різних інтерфейсів паралельного програмування та дослідження 

продуктивності чисельних методів для розв'язання часткових 

диференціальних рівнянь на різних архітектурах. 

При розв’язання рівняння Гросса–Пітаєвського для конденсату Бозе–

Ейнштейна у різних кількостях просторових вимірів, у роботі [147], автори 

представляють відкриту багатопроцесорну OpenMP-версію програм 

Fortran 90. Програми оптимізовані для використання з компіляторами GNU 

та Intel, що дозволяє їх використання на різних типах комп'ютерів з 

багатоядерними процесорами. Для чисельного розв'язку використовується 

алгоритм Кранка–Ніколсона з розділеними кроками для обчислення 

стаціонарних та нестаціонарних рішень. Програми мають простий і 

зрозумілий інтерфейс для користувачів та надають різноманітні фізичні 

величини, такі як енергія, хімічний потенціал, середньоквадратичні розміри, 

щільність та інші вихідні дані. Представлено результати тестування 

продуктивності для нових версій програми. Таким чином, ця робота 

пропонує користувачам прості та оптимізовані інструменти для чисельного 

моделювання конденсату Бозе–Ейнштейна у різних просторових вимірах з 

використанням OpenMP.  

В роботі О. Кудіна та С. Ігнатченко [28] представлені дослідження з 

застосування паралельних технологій до створення геометричних моделей в 

обчислювальних системах з загальною пам’яттю. Для задання області 

крайової задачі використовуються неявні функції. Розроблено алгоритми по 

побудови та візуалізації таких моделей. При реалізації цього алгоритму 
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використано стандартну бібліотеку мови програмування C++ (C++11). На 

основі створеного програмного забезпечення проведено низку 

обчислювальних експериментів, що доводять ефективність запропонованого 

алгоритму на комп’ютерах з різними типами процесорів.   

Вибір правильної архітектури важливий для досягнення оптимальної 

продуктивності в конкретній програмі, у статті [27] вказано на різницю між 

різними паралельними архітектурами, такими як SISD і MIMD. Автор 

роботи звертає увагу на роль паралельних моделей, таких як OpenMP, які 

надають розробникам високорівневі інструменти для реалізації паралельних 

програм. Це дозволяє розробникам зосередитися на алгоритмічних аспектах 

програми, спрощуючи розробку та підвищуючи продуктивність. 

Важливість структурування паралельних обчислень у програмуванні 

для полегшення їх розуміння та оптимізації продуктивності досліджено в 

роботі [144]. Для паралельного програмування, розглядається як загальна 

концепція шаблон “Divide and Conquer”, яку можна узагальнити охоплюючи 

багатьох інших шаблонів. В роботі надано загальну специфікацію цього 

шаблону та проаналізовано його етапи, такі як декомпозиція, базовий 

випадок і композиція. Наводяться результати, які дозволяють спеціалізувати 

цю загальну специфікацію для конкретних шаблонів паралельного 

програмування. Також проводиться аналіз різних моделей виконання та 

виділяються три класи обчислень. В загальному визначенні шаблону “Divide 

and Conquer” можна виділити параметризацію для різних ступенів 

розкладання і рекурсії, а також альтернативні рішення для випадків, які не є 

тривіальними. Це допомагає встановити загальну формулу, корисну на рівні 

семантики, ефективно використовувати паралельні обчислення, оскільки 

багато підзадач може бути розв'язано одночасно на різних обчислювальних 

ресурсах. Він застосовується в різних областях, включаючи наукові 

обчислення, обробку сигналів, машинне навчання та інші галузі, де потрібна 

паралельна обробка складних завдань. 
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Завдяки росту обчислювальної потужності обчислювальних систем, у 

2006 році NVIDIA випустила GPU NVIDIA GeForce 8800 і разом 

представила першу версію Compute Unified Device Architecture. Середовище 

розробки CUDA розроблено для використання графічних процесорів (GPU), 

для обчислень загального призначення, що дозволяє розробникам 

використовувати Graphics Processing Unit (GPU) для вирішення різних 

завдань, включаючи обчислення у МСЕ, МСР, різницеві методи та інших 

чисельних методах. 

CUDA має багато корисних бібліотек, таких як CUDA Toolkit, 

cuBLAS, cuSPARSE; підтримує різні мови програмування і може 

використовуватися на різних платформах, включаючи настільні комп'ютери, 

сервери та обчислювальні кластери. Це дозволяє масштабувати обчислення 

в МСЕ від простих завдань до великих об'ємів даних. 

Широке застосування у МСЕ для розв'язання складних 

обчислювальних задач знайшов відкритий стандарт для програмування 

прискорювачів GPU Open Computing Language. У 2009 році випущена перша 

версія OpenCL, яка внесла значний внесок у спеціфікації програмного 

забезпечення для паралельних обчислень на прискорювачах і відразу ж 

здобув популярність серед науковців та інженерів, які працюють у галузі 

обчислювальних наук і МСЕ, оскільки сприяє використовувати потужності 

GPU для розрахунків. Він дозволяє використовувати прискорювачі, які 

зазвичай використовуються для графічних обчислень, для виконання 

обчислень загального призначення у МСЕ. 

У роботі [120] представлено впровадження методу скінченних 

елементів (A-FEM), адаптованого до графічного процесора, без 

використання стратегії забарвлення сітки, щоб уникнути конкуренції. Усі 

елементи обробляються одночасно, а локальні дані обчислюються та 

консолідуються в пам’яті пристрою в новій адаптованій структурі даних у 

форматі координат (a-COO). Порівняння між запропонованим рішенням і 
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двома підходами GPU поелементного методу скінченних елементів (EbE -

FEM) показує багатообіцяючі результати, оскільки більше не потрібен етап 

фарбування сітки. Цей новий підхід добре підходить для проблем, які 

потребують повторного створення сітки та, як наслідок, потребують 

повторного фарбування, наприклад, адаптивного уточнення сітки. 

З 2011 року розробниками програмного забезпечення 

використовується відкритий стандарт програмування для паралельних 

обчислень Open Accelerators. ОpenACC дозволяє розпаралелювати 

обчислення та використовувати потужності прискорювачів для прискорення 

виконання програм. Це спрощує паралельне програмування, оскільки можна 

додавати директиви та анотації до існуючого коду програми, щоб вказати 

компілятору, як розпаралелювати обчислення. Мультиплатформенність 

OpenACC дозволяє використовувати його на різних архітектурах, типах 

прискорювачів (NVIDIA CUDA, AMD ROCm, і Intel Xeon Phi) і 

комп'ютерних системах. 

Комбінування паралельних технологій використовується для 

максимальної ефективності обчислень, використання різних 

обчислювальних ресурсів та дозволяє: 

– максимально ефективно розпаралелювати обчислення МСЕ на 

кластерах або багатоядерних системах;  

– розміщати обчислення на більшій кількості обчислювальних вузлів 

або використовувати більше ядер процесора;  

– розділити обчислення на менші частини, які обробляються 

паралельно, що може суттєво зменшити час обчислень та прискорити 

вирішення задач; 

– використовувати різні види обчислювальних архітектур, такі як 

центральні процесори (CPU) і графічні процесори (GPU). 

У роботі [93] досліджується ефективність паралельної реалізації 

трьох двовимірних явних чисельних методів на процесорах Intel® Xeon® 
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Scalable і співпроцесорі Knights Landing. Автори порівнюють 

продуктивність різних підходів, зокрема, гібридного паралельного 

програмування з використанням MPI і OpenMP, чистої реалізації MPI та 

покращеної версії на основі OpenMP. Результати експериментів показують, 

що оптимальний підхід залежить від різних факторів, таких як архітектура 

NUMA, балансування навантаження та характеристики алгоритму, зокрема 

кількість точок синхронізації. У випадку алгоритмів з багатьма точками 

синхронізації, гібридні підходи MPI/OpenMP показали кращі результати 

прискорення, особливо на системах із спільною пам'яттю. Однак, для методу 

з однією точкою синхронізації, чиста реалізація MPI виявилася 

найефективнішою. Отже, вибір підходу до паралельного програмування 

залежить від конкретних умов і характеристик задачі, і немає універсального 

підходу, який підходить для всіх сценаріїв. 

 У статті [90] досліджено ефективну реалізацію матричного 

множення, яке є важливим обчислювальним ядром у багатьох програмах. 

Для досягнення більшої продуктивності використовуються різні моделі 

паралельного програмування, такі як SIMD, OpenMP і OpenCL. Результати 

експериментів показали значні прискорення від 3,2 до 32 разів для різних 

моделей паралельного програмування порівняно з послідовною реалізацією, 

в залежності від розміру матриць. 

Питання інтеграції різних моделей програмування, таких як MPI, 

OpenMP і OpenACC, для побудови високопродуктивних обчислювальних 

систем розглянуто у роботі [88]. Основною проблемою під час такої 

інтеграції є виявлення помилок виконання, таких як взаємоблокування та 

умови змагання, що можуть виникнути. У статті надається класифікація 

операційних помилок, які можуть статися при інтеграції цих моделей 

програмування, і пропонується гібридна технологія тестування для 

виявлення таких помилок. Ця технологія поєднує статичний та динамічний 
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підходи і може ефективно виявляти різні типи помилок в системах, що 

використовують ці моделі програмування. 

У роботі [150] представлена методологія для модернізації існуючих 

послідовних наукових кодів з мінімальним перепроєктуванням, з метою 

перетворення їх на сучасний, паралельний і надійний код. Можливість 

автоматизованого розпаралелювання наукових додатків, які були розроблені 

з використанням послідовного підходу до програмування, працює для 

розпаралелювання в різних моделях програмування, включаючи спільну 

пам'ять (OpenMP), передачу повідомлень (MPI) і використання графічних 

процесорів (OpenACC). Автори наводять приклади реальних наукових кодів 

у галузі фізики та матеріалознавства, які були успішно розпаралелювані за 

допомогою цієї методології. Робота також підкреслює важливість навчання 

та підготовки студентів у галузі паралельних обчислень, і наводить приклади 

успішних проєктів, які були виконані студентами в рамках цієї методології.  

У роботі [135] наведено розробку паралельного алгоритму для 

розрахунку високоточних моделей гравітаційного поля Землі високого 

максимального ступеня/порядку. Це досягається завдяки поєднанню MPI і 

OpenMP для обчислення та інвертування нормальних рівнянь для 

відновлення поля гравітації Землі. Автори використовують 

високопродуктивний обчислювальний кластер для прискорення обчислень. 

Вони також вдосконалюють метод паралельного виключення Гауса-

Джордана MPI, щоб інвертувати нормальні матриці рівнянь на більшій 

кількості процесорних ядер, що робить обчислення більш швидкими та 

ефективними. Ця робота демонструє важливість паралельного 

програмування та використання високопродуктивних обчислювальних 

ресурсів для обробки великих обсягів даних і побудови точних моделей 

гравітаційного поля. Її результати можуть бути корисними для геодезистів і 

дослідників, які працюють у галузі гравіметрії та геодезії для покращення 

точності моделей Землі. 
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У роботі С.О. Субботіна [72] описано метод побудови нейро-нечітких 

моделей за прецедентами, який включає кілька ключових етапів, таких як 

скорочення розмірності вхідних даних, оцінка значимості ознак і 

екземплярів, формування розбиття вихідного простору ознак, синтез 

структури і налаштування параметрів нейро-нечіткої моделі, а також 

вилучення малоінформативних даних. Головною перевагою цього методу є 

можливість виконувати трудомісткі обчислювальні операції в паралельному 

режимі, що дозволяє прискорити побудову моделей. Такий підхід може бути 

корисним для автоматизації процесу синтезу нейро-нечітких моделей за 

прецедентами і забезпечити ефективність обчислень. 

Запропоновано модель, яка використовує ярусно-паралельну форму 

навчання нейро-нечітких мереж і базується на імовірнісному підході при 

налаштуванні параметрів у роботі [56]. Досліджено завдання автоматизації 

параметричного синтезу нейро-нечітких мереж для обробки заданих наборів 

спостережень. Основна ідея полягає в розподілі найбільш ресурсномістких 

обчислень між вузлами паралельної обчислювальної системи. У роботі 

проведено експерименти, щоб показати ефективність запропонованої моделі 

в розв'язанні практичних завдань діагностики. 

У роботі [132] представлено огляд просторових методів декомпозиції 

розрахункових областей крайової задачі, призначених для побудови 

паралельних алгоритмів чисельного розв’язку великих систем алгебраїчних 

рівнянь, що виникають в результатів дискретизації рівнянь в часткових 

похідних. Представлено декілька варіантів методу декомпозиції, в тому 

числі адитивний та мультиплікативний методи Шварца з різним характером 

розбиття на підобласті. Процедури розв’язування задачі фактично зводиться 

до послідовного наближення шуканої функції на спільній області розбиття. 

Процедури розв’язку для підобластей можна проводити незалежно одні від 

одної. Проте виникає необхідність узгодження граничних умов на кожній 

ітерації.  
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Іншим підходом дискретизації є використання методу декомпозиції у 

поєднанні з методом скінченних елементів. Один з таких варіантів 

представлено в роботі [161]. Використання метода декомпозиції в поєднанні 

з методом скінченних елементів використано для обчислення гармонік 

мікрохвильових полів у тривимірній конфігурації. Запропоновано алгоритм 

реалізції запропонованого підходу на кластері робочих станцій. 

У статті С.І. Гоменюка і С.В. Чопорова [82] досліджується проблема 

створення дискретних моделей, які базуються на трикутних елементах і 

призначені для апроксимації геометричних областей складної форми. Для 

представлення таких геометричних областей використовується 

функціональний підхід, який базується на використанні неявних функцій. 

При розробці цих функцій для складних геометричних об'єктів 

використовуються R-функції. Пропонується паралельний метод 

тріангуляції, що ґрунтується на використанні фонової сітки. Для оцінки 

ефективності запропонованого методу були проведені обчислювальні 

експерименти. В результаті були отримані тріангуляції, які практично 

досягають рівномірності при використанні рівномірних фонових сіток.  

Автори дослідження [158] пропонують набір перетворень коду, які 

автоматично перетворюють послідовні застарілі системи у їхню паралельну 

версію, зокрема, для використання на багатоядерних комп'ютерах. Вони 

реалізують ці перетворення шляхом аналізу вихідного коду на основі 

перезаписуваного абстрактного синтаксичного дерева. Також автори 

впроваджують аналіз, що допомагає виявити можливі зміни для конкретного 

розпаралелювання. У роботі наводяться приклади застосування цих 

перетворень та проводяться експерименти з продуктивністю. 

Паралельне програмування є потужною технікою для підвищення 

обчислювальної ефективності моделювання методом скінченних елементів. 

МCЕ широко використовується в різних галузях, включаючи акустику 

приміщень T. Yoshida [168], сейсмотехніку (H. Motoyama та ін., 2021 [114]), 
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фізику (Pikle та ін., 2018 [149]), структурну інженерію (Luca та ін., 2020 

[136]), бетонні конструкції (Wang та ін., 2013 [87]), електричні машини 

(Takahashi та ін., 2022 [156]), гідродинаміка (Y. He та ін., 2008 [122]), 

економіка (Alyoubi & Ganesh, 2016 [92]) та моделювання руху ґрунту (Quinay 

та ін., 2014 [152]). 

Однією з головних проблем у моделюванні МCЕ є висока вартість 

обчислень, особливо для великомасштабних задач. Паралельні обчислення 

можуть вирішити цю проблему шляхом розподілу обчислювального 

навантаження між кількома процесорами або ядрами. Кілька досліджень 

досліджували паралельні реалізації МCЕ для покращення продуктивності 

моделювання. 

Наприклад, T. Yoshida [168] запропонував метод моделювання 

акустики на основі паралельної хвилі з використанням явного скінченного   

елемента у часовій області без дисипації та з оптимізацією дисперсії. Їхній 

метод спрямований на більш ефективну імітацію акустики приміщення у 

великих сценах. Подібним чином Motoyama та ін. [114] розробили 

паралельну МCЕ загального призначення для аналізу проблем 

сейсмотехніки. Їх реалізація може аналізувати моделі з мільярдами ступенів 

вільності за кілька годин. 

Паралельні обчислення також можуть бути застосовані до певних 

аспектів МCЕ. Pikle та ін. [149] розглянули використання стратегій 

паралельної оптимізації на кожному кроці МCЕ, обговорюючи підводні 

камені та компроміси, пов’язані з кожним кроком. Luca та ін. [136] 

представив реалізацію паралельних обчислень методом конечних елементів 

для ефективного чисельного аналізу проблем балки, що рухається. Вони 

також надали огляд основних питань, пов’язаних із моделюванням МCЕ та 

впровадженням паралельних обчислень. 

Окрім підвищення продуктивності, паралельні обчислення надають 

можливість моделювання більш складних і реалістичних сценаріїв. Wang та 
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ін. [87] розпаралеліли програмне забезпечення для нелінійного аналізу 

бетонних конструкцій використовуючи МСЕ. Цей підхід дозволяє 

аналізувати складні тривимірні структури та врахувати термомеханічні 

ефекти. 

Крім того, паралельні обчислення можна використовувати для 

прискорення конвергенції перехідних рішень у моделюванні МCЕ. 

Y. Takahashi та ін. [156] досягли суттєвої паралельної продуктивності в 

аналізі магнітного поля практичних електричних машин, використовуючи 

масивне паралельне обчислювальне середовище. Вони застосували 

паралельний у просторі та часі скінченно-елементний аналіз і перекривали 

часові кроки різними процесами, щоб прискорити конвергенцію. 

По результатам роботи [126] розроблено розв’язувачі C++ і Fortran-90 

для створення за допомогою OpenMP паралельних процедур розв’язування 

в системі безсіткового скінченно-елементного аналізу з використанням 

комп’ютерів зі спільною пам’яттю. Матриця жорсткості при цьому може 

бути симетричною або несиметричною, а схеми розв'язку включають методи 

матриць горизонту (Skyline matrix) Холецького та паралельні передумовлені 

методи спряженого градієнта. Головна ідея полягає в автоматизації складних 

обчислень через інкапсуляцію матриць жорсткості та інших масивів у клас 

або модуль, що спрощує розробку програм і покращує продуктивність. 

У роботі [91] представлено альтернативний спосіб формулювання 

методу скінченних елементів (FEM) для паралельного обчислення, що 

базується на розв'язанні окремих елементів сітки, який називається FEM-

SES. Основна ідея полягає в розділенні розв'язку окремого елемента від 

розв'язку всієї сітки, що дозволяє використовувати паралельність на рівні 

елемента. Розв'язки окремих елементів потім накладаються у вузлах за 

допомогою зваженої суми на спільних вузлах. Для перевірки 

запропонованого методу використовується класична 2-вимірна задача 

електростатики, і отримані точні результати. Результати свідчать, що 
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кількість ітерацій запропонованого методу FEM-SES зростає лінійно з 

кількістю невідомих. Для реалізації методу FEM-SES використовувалися два 

покоління відеокарт NVIDIA з підтримкою CUDA, і часи виконання 

порівнювалися з класичним FEM, що показало значні переваги в 

продуктивності. 

У роботі [131] успішно впроваджено МСЕ на графічних 

обчислювальних пристроях (graphics processing units, GPU) з метою 

суттєвого скорочення часу симуляції. У статті пропонуються нові стратегії 

для генерації матриць методу СЕ, включаючи чисельну інтеграцію та збірку, 

шляхом використання поняття “warp per element” для заданої сітки. Ці 

стратегії розроблені з використанням відомого методу розфарбовування 

(coloring method). 

Запропоновані стратегії використовують спеціалізований алгоритм 

для досягнення дрібнозернового паралелізму та ефективного використання 

внутрішньої пам'яті пристрою. Функція warp shuffle у мові програмування 

Compute Unified Device Architecture (CUDA) використовується для 

прискорення чисельної інтеграції. Оцінка матриці жорсткості елемента 

подальше оптимізується шляхом впровадження частково паралельної 

реалізації чисельної інтеграції. 

Для оцінки продуктивності запропонованих стратегій проведено 

експерименти з розв'язання тривимірної задачі еластичності з 

використанням 8-вузлових гексаедричних елементів з трьома ступенями 

вільності на вузол. У результаті була досягнута прискорення до 8,2 рази в 

порівнянні із стратегією збірки на основі розфарбовування, яка 

використовує один потік на елемент, на графічних обчислювальних 

пристроях NVIDIA Tesla K40 GPU. Крім того, запропоновані стратегії 

показали кращу арифметичну продуктивність та пропускну спроможність.  

У роботі [148] представлена реалізація паралельного коду МCЕ в мові 

програмування C++, спрямованого на моделювання ударів. Робота 
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розпочинається коротким оглядом кінематики та чіткої схеми інтеграції, з 

деталями, що стосуються окремих аспектів. Далі представляється набір 

інструментів для паралельного програмування OpenMP, який 

використовувався для паралельного виконання МCЕ-коду DynELA, з 

фокусом на тому, як саме було здійснене розпаралелювання для системи із 

спільною пам'яттю за допомогою OpenMP. Представлена програма для 

моделювання ударів, і результати цієї програми порівнюються з 

результатами, отриманими за допомогою комерційного МCЕ-коду Abaqus.  

 У статті С.В. Чопорова [80] досліджується проблема використання 

паралельних обчислень в методі СЕ. Розглядаються особливості формування 

матриці жорсткості та розв'язку системи лінійних рівнянь, використовуючи 

паралельні обчислення. В рамках роботи проведені обчислювальні 

експерименти, результати яких використовуються для аналізу ефективності 

запропонованих підходів. 

У статті [130] представлений підхід до складання матриці жорсткості 

при моделюванні процесу деформування методом СЕ. Розв'язання системи 

одночасних лінійних алгебраїчних рівнянь (СЛАP) з великою розрідженою 

матрицею є важкою обчислювальною задачею. У цій статті пропонується 

спеціальний підхід до складання матриці жорсткості, що дозволяє 

обчислювати її компоненти індивідуально та незалежно, а також ефективно 

керувати пам'яттю комп'ютера та синхронізацією потоків. 

Роботи [118, 127, 169] присвячені паралельним алгоритмам 

розв’язування надвеликих систем лінійних рівнянь. Використання схем 

наближеного рішення дозволяє на кожній ітерації розділити процес 

обчислень на паралельні потоки. Зокрема, використання методу Гауса-

Зейделя дозволяє скоротити час розв’язку.  

Загалом, паралельне програмування пропонує значні переваги для 

моделювання МCЕ, включаючи покращену обчислювальну ефективність, 

здатність обробляти більші та складніші моделі та прискорену конвергенцію 
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перехідних рішень. Ці досягнення були продемонстровані в різних областях, 

підкреслюючи широку застосовність і потенціал паралельних реалізацій 

МCЕ. 

Висновки до розділу 1 

На основі огляду відкритих літературних джерел можна зробити 

висновок, що метод скінченних елементів завоював серед фахівців у галузі 

механіки загальне визнання як одні з ефективних методів вирішення задач 

механіки та математичної фізики. МСЕ сам по собі є потужним 

інструментом для моделювання фізичних явищ в інженерії та науці.  

Для МСЕ можна виділити наступні процедури розв’язування задачі: 

нанесення сітки скінченних елементів на область крайової задачі та 

формування вихідних даних; побудова матриць системи розв’язувальних 

рівнянь і рішення цієї системи; виведення та аналіз результатів розрахунку.  

У випадку лінійної задачі процес формування матриць 

розв’язувальних рівнянь та рішення системи алгебраїчних рівнянь складає 

основні затрати часу. Прискорення виконання цих етапів дозволить 

зменшити затрати машинного часу. 

Для підвищення продуктивності МСЕ використовуються різні підходи 

до розпаралелювання обчислень. Одними з таких способів є методи, що 

базуються на використанні спеціальних алгоритмів розв’язування систем 

лінійних алгебраїчних рівнянь з розрідженими симетричними матрицями. 

Інші підходи спрямовані на дослідження ефективності декомпозиції 

розрахункової області на декілька підзадач меншої розмірності, розв’язання 

яких можна виконати паралельно. При чому можна використати відповідні 

методи рішення систем рівнянь. Метод декомпозиції передбачає різні 

підходи до розділення на підобласті та способами моделювання контакту 

поверхонь між собою. В кожному випадку необхідно формулювати 
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додаткові граничні умови та формувати розрахункову сітку СЕ на кожній 

області окремо.  

Більшість існуючих пакетів прикладних програм, що використовують 

метод скінченних елементів, розроблено за послідовною схемою. 

Паралелізація обчислювальних процесів для вже існуючої архітектури 

програмного забезпечення являється нетривіальною задачею.  

Серед опублікованих робіт дуже мало публікацій присвячених 

використанню паралельних технологій в рамках існуючих пакетів 

прикладних програм, зокрема організації паралельних обчислень на етапі 

формування систем розв’язувальних рівнянь. В більшості випадків такі 

пакети використовуються на відокремленому розрахунковому пристрої і 

потребують обробки даних, що знаходяться на одному носієві.  

Таким чином актуальною задачею є розробка методики використання 

алгоритмів паралельних обчислень в методі скінченних елементів для 

систем з загальною пам’яттю. 
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2 МСЕ ДЛЯ ТРИВИМІНИХ ЗАДАЧ ДЕФОРМУВАННЯ 

КОНСТРУКЦІЙ 

2.1 Побудова матриць жорсткості скінченного елемента 

При розв'язанні задачі шукана величина описується аналітичними 

співвідношеннями, які моделюють властивості матеріалу (безперервність, 

ізотропність та ін.) та закони механіки (закон рівноваги сил, варіаційні 

принципи). Це дозволяє за заданих початкових та граничних умов отримати 

однозначне розв'язання задачі. 

Для виведення основних співвідношень МСЕ скористаємося 

принципом віртуальних переміщень, згідно з яким для отримання 

коефіцієнтів матриці жорсткості СЕ необхідно вираз для варіації пружної 

енергії деформації. 

Вираз варіації пружної енергії деформації має вигляд: 

 
ij

ij
V

W dVδ σ δε= ∫∫∫ .                                (2.1) 

 

Для більшості матеріалів в інтервалі пропорційності можна прийняти 

залежність між деформаціями та напруженнями можна прийняти у вигляді 

узагальненого закону Гука. Тоді варіація пружної енергії має вигляд: 

 

( )2 ik jl ij
kl ij

V
W g g g dVδ µ ε λθ δε= +∫∫∫ ,       (2.2) 

або 

( )2 ik jl
kl ij

V
W g g dVδ µ ε δε λθδθ= +∫∫∫ ,  
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де µ, λ – коефіцієнти Ляме, g – метричний тензор, θ – функція змінення 

об’єму. 

Нехай задано глобальну декартову систему координат zi. Для описання 

властивостей скінченного елементу розглянемо місцеву систему координат 

ξi, в якій координати точок скінченного елементу лежать межах від –1 до +1.  

Між базисними та місцевими координатами СЕ прийнято 

відображення (pис. 2.1).    

 
 
 
 
 

 

 

 

 

 

Рис. 2.1 – Скінченний елемент 

 
8 1 2 3

1
( , , )i l i

l
l

z N zξ ξ ξ
=

= ∑ ,     (2.3) 

 

де     ( )( )( )1 1 2 2 3 31 1 1 1
8

l
l l lN ξ ξ ξ ξ ξ ξ= + + +  – функції форми для l -го вузла 

СЕ, i
lz  – глобальні координати l -го вузла СЕ. 

Переміщення за об’ємом скінченного елементу серендипова сімейства 

апроксимуємо у вигляді: 

 
8 1 2 3

1
( , , )l l

i i
l

u N uξ ξ ξ
=

= ∑ .     (2.4) 



48  

 

Використовуючи моменту схему скінченних елементів (МССЕ) 

компоненти вектору переміщень точок СЕ можна також апроксимувати у 

вигляді розкладання [67]:  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )000 100 010 001100 010 001( )k
i i i i iu ω ω ψ ω ψ ω ψ= + + + +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )110 101 011 111110 101 011 111
i i i iω ψ ω ψ ω ψ ω ψ+ + + +  

 

або 

( ) ( ) ( ) ( )( )

0 0 0

m n l mnlpqr pqrpqr pqrk
i i i

p q r pqr
u ω ψ ω ψ

= = =
= =∑ ∑ ∑ ∑ ,  (2.5) 

 

де     ( )pqr
iω  – коефіцієнти розкладання;  

         m, n, l – степені апроксимуючого полінома (для лінійного СЕ 

m=n=l=1); 
( )pqrψ   – набір степеневих координатних функцій:  

 

( ) ( ) ( ) ( )1 2 3

! ! !

p q r

pqr
p q r

ξ ξ ξ
ψ = ⋅ ⋅ .    (2.6) 

 

Для координатних функцій ( )pqrψ  виконується умова 

диференціювання: 

 

( ) ( ) ( )pqr p q rα β γ α β γψ ψ+ + − − −∂ = . 

 

Похідні функції переміщень мають вигляд: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )100 110 001 111010 001 011( )
,1
k

i i i iiu ω ω ψ ω ψ ω ψ= + + + ; 

( ) ( ) ( ) ( ) ( ) ( ) ( )010 110 011 111100 001 101( )
,2
k

i i i iiu ω ω ψ ω ψ ω ψ= + + + ; 

( ) ( ) ( ) ( ) ( ) ( ) ( )001 101 011 111100 010 110( )
,3
k

i i i iiu ω ω ψ ω ψ ω ψ= + + + .       (2.7) 

 

Компоненти тензору деформацій представимо у вигляді розкладення 

за степеневими функціями: 

 

( ) ( )stq stq
ij ij

stq
eε ψ= ∑ .     (2.8) 

 

В матричній формі:  

 

{ } ( ){ }T
ij ij ijeε ψ= , 

де      
1
2

ji k k
ij k kj i

u ua aε
ξ ξ

 ∂ ∂
= + 

∂ ∂ 
 – лінійний тензор деформації; 

i
i
k k

za
ξ
∂

=
∂

 – тензор перетворення координат. 

Представимо коефіцієнти розкладення ije  тензора деформацій ijε , що 

входять в (2.8) через коефіцієнти апроксимації переміщень ( )pqr
sω (2.5): 

 
Т s

ij ij s=e F ω .     (2.9) 

 

Матриця s
ijF  може бути обчислена у відповідності до МССЕ [35]:  
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( ) ( 1 )
( 1 )11

pqrpqr s
s p q re bµ ν η

µ ν η
µνη

ω +
+ − − −= ∑ , 

( ) ( 1 )
( 1 )22

pqrpqr s
s p q re bµ ν η

µ ν η
µνη

ω +
− + − −= ∑ , 

( ) ( 1)
( 1 )33

pqrpqr s
s p q re bµ ν η

µ ν η
µνη

ω +
− − + −= ∑ , 

( )( ) ( 1 ) ( 1 )
( 1 ) ( 1 )12

1
2

pqrpqr s s
s p q r s p q re b bµ ν η µ ν η

µ ν η µ ν η
µνη

ω ω+ +
− + − − − − + −= +∑ , 

( )( ) ( 1) ( 1 )
( 1 ) ( 1)13

1
2

pqrpqr s s
s p q r s p q re b bµ νη µ ν η

µ ν η µ ν η
µνη

ω ω+ +
− + − − − − − += +∑ , 

( )( ) ( 1) ( 1 )
( 1 ) ( 1)23

1
2

pqrpqr s s
s p q r s p q re b bµ ν η µ ν η

µ ν η µ ν η
µνη

ω ω+ +
− − + − − − − += +∑ , (2.10) 

 

де 
( ) ( ) ( ) 1 2 3

( )

( )
1 2 3

0

s
s zb

µ ν η

µνη µ ν η

ξ ξ ξ
ξ ξ ξ

+ +

= = =

∂
=

∂ ∂ ∂
. 

 

Коефіцієнти розкладення деформацій )(
11

pqre , що містять хоча б один з 

коефіцієнтів, відсутніх (2.5) має бути виключений з (2.7). Таким чином, 

отримуємо наступне розкладання: 

 
(000) (001) (010) (011)(001) (010) (011)

11 11 11 11 11e e e eε ψ ψ ψ= + + + . (2.11) 

 

На основі розкладення (2.8), (2.11) будується матриця 11
sF . 

Аналогічно для інших компонент тензору деформацій отримуємо 

наступні вирази: 

 
(000) (100) (001) (101)(100) (001) (101)

22 22 22 22 22e e e eε ψ ψ ψ= + + + , 
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(000) (100) (010) (110)(100) (010) (110)
33 33 33 33 33e e e eε ψ ψ ψ= + + + , 

(000) (001) (001)
12 12 12e eε ψ= + , 

(000) (010) (010)
13 13 13e eε ψ= + , 

(000) (100) (100)
23 23 23e eε ψ= + .     (2.12) 

 

Матриці 22 33 12 13 23, , , ,s s s s sF F F F F  будуються за тією ж схемою. 

Функцію змінення об’єму апроксимуємо наступним чином: 

 
1 1 1 ( ) ( )

0 0 0

m n l αβγ αβγ

α β γ
θ χ ψ

− − −

= = =
= ∑ ∑ ∑ ,                       (2.13) 

 

де 𝜒𝜒(𝛼𝛼𝛼𝛼𝛼𝛼) – коефіцієнти розкладання, що визначаються за співвідношенням: 

 

( ) ( ) ( ) 1 2 3

( )
( )

1 2 3
0

ij
ij g

α β γ
αβγ

α β γ

ξ ξ ξ

ε
χ

ξ ξ ζ

+ +

= = =

∂
=

∂ ∂ ∂
.             (2.14) 

В матричному вигляді: 

{ } { }T
θ

θ χ ψ= ,                                       (2.15) 

 

Між коефіцієнтами χ  та ωk існує зв’язок: 

 
k

kθ=χ F ω .                                        (2.16) 

 

Тоді вираз для варіації пружної енергії має вигляд: 
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{ } { } { }{ }2
T T ik jl

ij ij kl kl
V

W e g g e dVδ ψ µ ψ∂ = +∫∫∫  

{ } { } { }{ }TT

V
dVθ θδ χ ψ λ ψ χ+ =∫∫∫  

{ } { } { } { }2
T T ik jl

ij ij kl kl
V

e g g dV eδ ψ µ ψ
 

= + 
 
∫∫∫  

{ } { } { } { }TT

V
dVθ θδ χ λ ψ ψ χ

 
+ = 

 
∫∫∫  

θ
T T

ij klδ δ= +e He χ H χ .    (2.17) 
 

Тут  

{ } { }
1 1 1

1 2 3

1 1 1
2

Tijkl ik jl
ij klH g g g d d dψ µ ψ ξ ξ ξ

− − −

 = =  ∫ ∫ ∫H ;                (2.18) 

[ ] { } { }
1 1 1

1 2 3
θ

1 1 1

TH g d d dθ θ θψ λ ψ ξ ξ ξ
− − −

= = ∫ ∫ ∫H .                                 (2.19) 

 

З урахуванням прийнятих позначень (2.8), (2.16), (2.18), (2.19) вираз 

(2.17) приймає вигляд: 

 

' ' θs
T s T t T s T t

ij kl t s tW θ θδ δ δ′ ′ ′ ′
′ ′= +ω F H F ω ω F H F ω .              (2.20) 

 

Для побудування матриці жорсткості СЕ необхідно перейти у виразі 

(2.20) від коефіцієнтів розкладання kω ′  до коефіцієнтів розкладання 

переміщень через функції форми (2.4). 

Порівнюючи (2.4) та (2.5) відзначаємо зв’язок між функціями форми та 

степеневими функціями: 

 

{ } [ ] { }TN A ψ= ,                                     (2.21) 

або  
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k k′ ′=ω Au ,                          (2.22) 

 

де A – матриця перетворення, що потребує визначення для конкретного виду 

апроксимуючих функцій. 

Підставляючи (2.22) у (2.20), маємо:  

 

' ' θ
T T s T t T T s T t
s ij kl t s tW θ θδ δ δ′ ′ ′ ′

′ ′= + =u A F H F Au u A F H F Au  

( ' ')( ' ') s tT s t T
s t s tθδ δ′ ′ ′ ′= +u G u u G u ,     (2.23) 

 

де us’ – вектор вузлових переміщень СЕ, ( )s t′ ′G  та ( )s t
θ
′ ′G  – матриці, що 

визначаються за допомогою формул: 

 

[ ] [ ];
TTs t s ijkl t

ij klG A F H F A′ ′ ′ ′       =         

[ ] [ ].
TTs t s tG A F H F Aθ

θ θ θ
′ ′ ′ ′       =                             (2.24) 

 

Матриця жорсткості СЕ обчислюється за формулою: 

 
( ' ')( ' ') ( ' ')
θ
s ts t s t= +K G G .    (2.25) 

 

Таким чином, для конкретних видів СЕ і апроксимуючих поліномів 

для отримання матриці жорсткості необхідно обчислити компоненти 

спеціальних матриць s
ij
′F , s

θ
′F , A . 

Для визначення матриці жорсткості необхідно обчислити інтеграли що 

входять в рівняння (2.18), (2.19). Цю процедуру можна виконати за 

паралельним алгоритмом. 
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Процедура формування матриці жорсткості скінченного елементу 

містить наступні кроки:  

– обчислення коефіцієнтів розкладання переміщень та коефіцієнтів 

матриці А; 

– обчислення часткових похідних для формування матриці F, що 

пов’язує апроксимаційні поліноми для переміщень та деформації у СЕ. 

– чисельне інтегрування за схемою Гауса.  

Для точок інтегрування виконуються обчислення матриць переходу 

від глобальної системи координат до локальної системи координат та 

матриць зворотного перетворення в точках інтегрування.  

 

2.2 Розв’язувальні рівняння пружності та термопружності 

анізотропних твердих тіл  

Для описання напружено–деформованого стану анізотропних твердих 

тіл використовуються співвідношення, що враховують специфіку фізико-

механічних характеристик матеріалу. В загальному випадку анізотропні 

особливості можна врахувати за допомого рівнянь зв’язку між 

деформаціями та напруженнями у вигляді лінійного закону Гука:  

 
ij ijkl

klCσ ε= ,     (2.26) 

 

де ijσ  – компоненти тензора напружень; 

ijklC  – компоненти тензора пружних констант матеріалу; 

klε  – компоненти тензора деформацій. 

Тензор пружних констант анізотропного матеріалу в загальному 

випадку має властивість симетрії:  
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* *
ijkl jiklC C= ; * *

ijkl ijlkC C= ; * *
ijkl klijC C= .  (2.27) 

 

Варіація пружної енергії деформації анізотропного тіла має вигляд: 

 

k k

ij ijnm
k ij nm ij

V V
W dv C dvδ σ δε ε δε= =∫∫∫ ∫∫∫  .   (2.26) 

 

Використовуючи МССЕ варіацію пружної енергії для анізотропного 

можна записати у вигляді: 

 

{ } ( ){ } ( ){ }{ }T ijnm
ij nmij nm

V
W e C e dvδ δ ψ ψ = = ∫∫∫

{ } [ ] { } { } [ ] { }' '
' ( ) ( ) 'T

T T Ts ijnm t
s ij ij nm nm t

V
u A F C F A u dvδ ψ ψ     = =     ∫∫∫ . 

' ( ' ') '
' ( ) ( ) ' .T T s T s t t T

s ij nm t
V

dvδ= ∫∫∫ u A F G F Au    (2.27) 

 

1. Для побудування маcиву ijklС  компоненти тензору пружних 

констант ijklC*  задаються у відповідності з видом анізотропії в системі 

координат ix , пов’язаній с осями анізотропії. Для переходу в місцеву 

систему координат iξ  необхідно виконати перетворення тензору четвертого 

рангу за формулою [129]: 

 

*
mnprijkl i j k l

m n p rC C d d d d= ,    (2.28) 

 

де   i
md  – тензор повороту системи координат, який можна обчислити за 
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допомогою тензора перетворення координат 
i

i
m m

d
dx
ξα =  за допомогою 

співвідношення 
i

i m
m

mm
d

g
α

= , ( mng  – компоненти метричного тензора). 

Варіація енергії пружної деформації СЕ буде мати вигляд: 

 
' '

' '
T s t

s tWδ δ= u K u .    (2.29) 

 

де  ' 's tK  – матриця жорсткості СЕ. 

Для поведення аналізу працездатності конструкції необхідно 

враховувати температурні ефекти, що виникають в масиві тривимірного 

тіла, особливо в умовах нестаціонарного навантаженння.  

В такому випадку розв’язувальні співвідношення МСЕ необхідно 

доповнити рівнянням термопружності.  

Виходячи з закону збереження енергії варіаційне рівняння 

термопружності Біо як узагальнення варіаційного принципу Лагранжа має 

вигляд [52]: 

 
1 2 3 1 2 3 0

k k kV V S
F gd d d gd d d dsδ ξ ξ ξ δ ξ ξ ξ δ− − =∫∫∫ ∫∫∫ ∫∫P u q u .  (2.26) 

 

Варіація вільної енергії Fδ  обчислюється за формулою: 

 

(т)
ij

ijF Wδ δ σ δε= − ,    (2.27) 

 

де  ij
ijWδ σ δε=  – варіація пружної енергії деформації; 

(т)
ijσ  – температурні напруження.  
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У випадку сумісної дії силового та теплового навантажень деформації 

можна представити як суму пружної та температурної складових:  

 
(п) (т)

ij ij ijε ε ε= + ,      (2.28) 

( )(т) (т)
0ij ij T Tε α= − ,     (2.29) 

 

де     (т)
ijα  – тензор лінійного теплового розширення; 

T  – температура в точці тіла;  

0T  – початкова температура. 

Контраваріантні компоненти тензора напружень можна представити у 

вигляді суми пружних та температурних напружень з урахуванням знаку: 

 

(п) (т)
ij ijijσ σ σ= − .     (2.30) 

 

Компоненти тензора напружень для анізотропної конструкції 

визначаються за законом термопружності Дюгамеля–Неймана, що є 

узагальненням закону Гука на випадок врахування температури [52]: 

 

( )0
ij ijkl ij

klC T Tσ ε β= − − ,    (2.31) 

 

де  ij ijkl
klСβ α=  – тензор ізотермічних пружних констант, що 

визначають взаємний вплив температурного поля і поля деформацій.  
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2.3 Теплопровідність твердих тіл 

Для розв’язання задачі пружності необхідно знайти розв’язок задачі 

теплопровідності [35] 

 

0 0( ) ( )ij
ij

V V
c T T Tdv T T dvε δ β δε− + − =∫∫∫ ∫∫∫  

[ ], , 0 ( )ij
i j

V V S
T T dv w Tdv q h T Tdsλ δ δ θ δ= + + + −∫∫∫ ∫∫∫ ∫∫ ,  (2.32) 

 

де      сε – теплоємність при постійній деформації;  

βij – компоненти тензору ізотермічних пружних постійних, які 

визначають взаємний вплив температурного поля і поля деформацій;  

εij – компоненти тензору деформацій; 

λij – компоненти тензору теплопровідності; 

w0 – густина внутрішніх джерел теплоутворення; 

q – тепловий потік; 

h – коефіцієнт теплообміну; 

θ – температура навколишнього середовища. 

Рівняння (2.26), (2.32) містять пов’язані між собою складники. 

Особливо цей зв’язок притаманний більшості полімерних та композитних 

матеріалів, для яких характерний суттєвий вплив температури тіла на 

фізико-механічні параметри [37]. 

Розглянемо побудову матриць жорсткості та теплопровідності 

скінченного елемента з апроксимацією переміщень на основі МССЕ. 

Введемо до розгляду глобальну декартову систему координат zi. Для 

описання властивостей скінченного елементу розглянемо місцеву систему 

координат ξi, в якій координати точок скінченного елементу лежать межах 

від –1 до +1.  
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Розглянемо лінійний скінченний елемент, властивості якого 

визначаються теплофізичними характеристиками матеріалу. Розподілення 

температури за обֹ’ємом СЕ задаються стандартними функціями форми у 

вигляді поліномів Лагранжа: 

 
8 1 2 3

( ) ( )
1

( , , )l l
l

T Tφ ξ ξ ξ
=

= ∑ ,    (2.33) 

 

де     )(lT  – температура у вузлових точках СЕ. 

Співвідношення (2.33) можна записати в матричній формі: 

 

{ } { }TT T φ= .     (2.34) 

 

З іншого боку, можна апроксимувати функцію температури за 

допомогою розкладання за степеневими функціями згідно підходу МССЕ: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )000 100 010 001 110100 010 001 110T χ χ ψ χ ψ χ ψ χ ψ= + + + + +  

( ) ( ) ( ) ( ) ( ) ( )101 011 111101 011 111χ ψ χ ψ χ ψ+ + + ,     (2.35) 

або  

( ) ( )111 pqr pqr

pqr
T χ ψ= ∑ .      (2.36) 

 

Функції форми можна виразити через степеневі функції: 

 

{ } [ ] { }TBφ ψ= ,     (2.37) 
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де [ ]B  – матриця перетворення. 

Похідні функції температури по координатах обчислюються за 

формулами: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )100 110 010 101 001 111 011
1

T χ χ ψ χ ψ χ ψ
ξ
∂

= + + +
∂

, 

( ) ( ) ( ) ( ) ( ) ( ) ( )010 110 100 011 001 111 101
2

T χ χ ψ χ ψ χ ψ
ξ
∂

= + + +
∂

, 

( ) ( ) ( ) ( ) ( ) ( ) ( )001 101 100 011 010 111 110
3

T χ χ ψ χ ψ χ ψ
ξ
∂

= + + +
∂

.  (2.38) 

 

Варіація функції температури та її часткових похідних можна записати 

у векторній формі: 

{ } { }TTδ δχ ψ= ; 

{ } { }, ,
T

i iTδ δ χ ψ= .          (2.39) 

 

Згідно (2.35) та (2.37) маємо: 

{ } [ ] { }TTT T B ψ= , 

{ } [ ] { }, ,
TT

i iT T B ψ= , 

{ } [ ] { }TTT T Bδ δ ψ= , 

{ } [ ] { }, ,
TT

i iT T Bδ δ ψ= .          (2.40) 

 

Для виконання граничних умов крайової задачі теплопровідності 

представимо розподілення температури на поверхні ( )st  скінченного 

елементу, що знаходиться на границі тіла, за допомогою функції: 
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( ) ( ) ( )1 1

0 0

s t s t

s t

p q p qst

p q
T T φ

= =
= ∑ ∑ .   (2.40) 

 

З урахуванням { } { } [ ]TT TT Bχ =  температура в матричній формі на 

поверхні ( )st  буде мати вигляд [34]: 

 

( ) ( ){ } ( ) ( ){ }Tst st st stT B Tψ  =   
,    (2.41) 

( ) ( ){ } ( ) ( ){ }Tst st st stT B Tδ ψ δ =   
.    (2.42) 

 

Після підстановки (2.41), (2.42) в рівняння (2.33) отримуємо варіаційне 

рівняння [31]: 

 

{ } [ ] { } { }[ ]{ }
1

1 2 3
, ( ) ,

1

TTT ij
T i ij jW T B g B T gd d dδ δ ψ λ ψ ξ ξ ξ

−
= +∫ ∫ ∫  

{ } [ ] { }
1

1 2 3
0

1

TTw T B g d d dδ ψ ξ ξ ξ
−

+ +∫ ∫ ∫

{ } { } 11
1 1 1 1 1 1

1

1
Є

T tT snn
s t s t n s tq T B g d dδ ψ ξ ξ

−

 + + ∫ ∫

{ } { } { } { } 2 2
2 2 2 2 2 2 2 2 2 2

1

1
Є

T TT s tn n
s t s t s t s t n s th T B B T g d dδ ψ ψ ξ ξ

−

   + −  ∫ ∫

{ } { } 2 2
2 2 2 2 2 2

1

1
Є

TT s tn n
s t s t n s th T B g d dθ δ ψ ξ ξ

−

 − = ∫ ∫  

2 2(s t ) 0T T T Tδ δ δ δ= + + + =T H T T H T T P T S ,   (2.43) 

 

де H  – матриця теплопровідності,  
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g  – метричний тензор; 

Єnst  – символ Леві-Чивіти. 

 

Матриця теплопровідності H має вигляд: 

 

[ ] { } { }[ ]
1

1 2 3
, ( ) ,

1

TT ij
i ij jB g B gd d dψ λ ψ ξ ξ ξ

−
= ∫ ∫ ∫H .  (2.44) 

 

Матриця 2 2( )s tH  є додатком до матриці теплопровідності, зумовленим 

граничними умовами 3 роду на поверхні СЕ: 

{ } { } { } { }2 2 2 2
2 2 2 2 2 2 2 2 2 2

1( )

1
Є

TTs t T s tnn
s t s t s t s t n s th T B B T g d dδ ψ ψ ξ ξ

−

   =   ∫ ∫H . 

де P - вектор еквівалентного навантаження, зумовленого внутрішнім 

джерелом теплоутворення:  

 

[ ] { }
1

1 2 3
0

1

Tw B gd d dψ ξ ξ ξ
−

= ∫ ∫ ∫P .    (2.45) 

 

де S - вектор еквівалентного навантаження, зумовлений тепловими потоками 

та температурою на поверхні скінченного елементу: 

{ } 11
1 1 1 1 1 1

1

1

T tsnn
s t s t n s tq B g d dψ Ε ξ ξ

−

 = − ∫ ∫S  

{ } 2 2
2 2 2 2 2 2

1

1

T s tnn
s t s t n s th B g d dθ ψ Ε ξ ξ

−

 −  ∫ ∫ .       (2.46) 

 

Прирівнюючи до нуля варіацію функції поля (2.43) отримуємо 

рівняння:  

2 2( ) 0s t+ + + =HT H T P S .    (2.47) 
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Розв’язок рівняння (2.47) є поле температур у випадку стаціонарної 

теплопровідності. 

 

Висновки до 2 розділу 

Для побудови розв’язувальних рівнянь, що описують процеси 

деформування під дією силових та теплових навантажень, 

використовуються співвідношення тривимірної теорії пружності та 

термопружності ізотропних та анізотропних тіл. 

Побудовано матриці жорсткості та теплопровідності скінченного 

елемента. 

Розроблена методика є універсальною і має ряд особливостей: 

– незалежність порядку розв’язувальних рівнянь від структури 

шаруватих тіл, що є зручним реалізації чисельними методами; 

– можливість завдання відповідних значень теплофізичних 

характеристик ізотропних або анізотропних шарів шаруватих тіл; 

– можливість використання тривимірних скінченних елементів при 

моделюванні фізико-механічних процесів, що відбуваються в конструкціях 

довільної геометричної форми за реальних умов експлуатації.  

Застосування запропонованої методики дозволяє вирішувати задачі 

термопружності для конструкцій з ізотропними та анізотропними 

влаcтивостями з урахуванням реальних експлуатаційних навантажень. 
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3 РОЗРОБКА АЛГОРИТМІВ И ПАКЕТУ ПРИКЛАДНИХ 

ПРОГРАМ 

3.1 Структура обчислювального комплексу “МІРЕЛА+” 

Обчислювальній комплекс “МІРЕЛА+” (міцність і руйнування 

еластомерних матеріалів), призначений для розрахунку конструкцій з 

еластомерів і композитів при статичних та динамічних навантаженнях [52].  

Структура обчислювального комплексу наведена на рис. 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 3.1 – Структура обчислювального комплексу “МІРЕЛА+” 

 

Призначення підсистем обчислювального комплексу “МІРЕЛА+”: 

− ПЕЛМА (пружність еластомерних матеріалів) – є базовою та 

застосовується для вирішення задач лінійної пружності еластомерів; 
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− НЕЛМА (нелінійне деформування еластомерних матеріалів) – 

застосовується для вирішення геометричних та фізичних задач пружності 

еластомерів; 

− ВЕЛМА (в'язкопружність еластомерних матеріалів) – призначена 

для розрахунку еластомерних конструкцій, котрі працюють в умовах 

повзучості та релаксації напруження; 

− ТЕРЕЛ (теплопровідність еластомерних матеріалів) – 

застосовується для вирішення задач стаціонарної та нестаціонарної 

теплопровідності в елементах конструкцій з еластомерів; 

− ВРЕМА (в'язкопружне нелінійне руйнування еластомерів) – 

призначена для розрахунку параметрів механіки руйнування в умовах 

в’язкопружного нелінійного деформування; 

− ТЕРМЕЛ (термомеханіка еластомерних матеріалів) – призначена 

для визначення температури дисипативного розігрівання еластомерних 

елементів конструкцій при циклічному деформуванні; 

− МРЕМА (механіка руйнування еластомерних матеріалів) – 

призначена для визначення параметрів руйнування: коефіцієнтів 

інтенсивності напруження та величини розкриття тріщин в конструкціях з 

еластомерів; 

− МІЦКОМ (міцність композитних матеріалів) – призначена для 

розрахунку елементів конструкцій з шаруватих ортотропних і анізотропних 

армованих композитів; 

− ДИНЕМА (динаміка конструкцій з еластомерних матеріалів) – 

призначена для рішення задач пружності еластомерів в умовах динамічного 

навантаження; 

− КОЕЛА (контактна взаємодія еластомерних матеріалів) – 

призначена для визначення напружено-деформованого стану конструкцій з 

еластомерів в умовах контактної взаємодії; 
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− ДОВЕМА (довговічність еластомерних матеріалів) – призначена 

для розрахунку терміну служби конструкцій з еластомерів, що працюють в 

умовах тривалого та циклічного навантаження; 

− ЕЛКОННА (пружність конструкцій з початковими 

напруженнями) – підсистема для розрахунку конструкцій з початковими 

напруженнями та деформаціями. 

Вирішення завдання за допомогою методу скінченних елементів 

передбачає послідовність таких процесів [52]: 

1) підготовка вихідних даних – скінченно-елементна дискретизація 

об’єму, що розраховується, його топологія та кінематичні і силові граничні 

умови, фізико-механічні характеристики матеріалу; 

2) чисельна реалізація скінченно-елементної моделі – формування 

глобальної системи розв’язувальних рівнянь та її рішення; 

3) обробка результатів рішення – обчислення параметрів напружено-

деформованого та теплового стану конструкції та візуалізація у вигляді 

таблиць, графіків, двовимірних або тривимірних зображень. 

Всі ці процедури чисельної реалізації, як прийнято в автоматизованих 

розрахунках, виконуються трьома підсистемами – препроцесором, 

процесором та постпроцесором, відповідно. 

 

3.1.1 Препроцесор – підготовка вихідних даних 

Препроцесор являє собою блок програм, які забезпечують завдання 

геометрії досліджуваного об'єкта, структура якого представлена на рис. 3.2. 
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Рис. 3.2 – Структура препроцесора 

 

Розшифрування скорочень: 

− ПВД – препроцесор; 

− Х (NUX,3) – формування поля координат; 

− NF (NUX) – формування поля топології; 

− ФМПМ – фізико-механічні параметри матеріалу; 

− СЕДО – скінченно-елементна дискретизація об'єкта; 

− NF (NUX) – формування граничних умов; 

− ПРЗС – пружні і реологічні закони стану. 

Для завдання геометрії є бібліотека фігур стандартних типорозмірів: 

призматичні, циліндричні, сферичні, конічні і тіла обертання. Геометрія 

нестандартних об'єктів задається за допомогою опорних точок, які є точками 

змін в контурі фігури. 

Для опису конструкції вводяться дві системи координат – базисна 

декартова система координат zk, в якій задаються геометричні координати 

вузлів, поля навантажень і граничних умов та місцева криволінійна система 

координат xi, в якій задається нумерація і сіткові координати вузлів 

(рис. 3.3). 
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Рис. 3.3 – Просторова і сіткова нумерація вузлів 

 

В головній програмі виконується резервування робочих масивів для 

силових та температурних полів, формуються вхідні дані [31]. 

1. Розміри сіткової області М1, М2, М3, при цьому для зменшення 

ширини стрічкової матриці системи розв’язувальних рівнянь необхідно 

враховувати, щоб виконувалося співвідношення М1≤М2≤М3.  

2. Закон апроксимації (лінійний, квадратичний, кубічний). 

3. Форма і розміри конструкції. 

4. Поле координат, яке формується в масиві X(NUX,3), NUX – 

зарезервований розмір масиву. 

5. Для розв’язку задачі необхідно знати інформацію про вирізи, 

отвори, тріщини, тобто інформацію по топологію конструкції. Для цього 

використовується поле признаків, що формується за допомогою 

підпрограми TELOS у вигляді масиву NF для пружної задачі та NFT для 

задачі теплопровідності [52]: 

CALL TELOS (N1, N2, N3, K1, K2, K3, NF), 

де N1, N2, N3 – початкові, а K1, K2, K3 – кінцеві сіткові координати області.  

Для вузлів, до яких зі сторони зростання сіткових координат примикає 

СЕ, формується признак 71, а для вузлів, в яких немає СЕ – 7. 

Граничні умови формуються відносно базисної системи координат zi 
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зверненням до підпрограми ZAKREP [52]: 

CALL ZAKREP ( N1, N2, N3, K1, K2, K3, F, NF), 

де N1, N2, N3 – начальні і К1, К2, К3 – кінцеві сіткові координати точки тіла, 

параметр F визначає тип граничної умови.  

В підпрограмах – функціях задаються фізико-механічні 

характеристики матеріалу конструкції. 

 

3.1.2 Процесор – чисельна реалізація скінченно-елементної 

моделі 

Блок процесора займає центральне місце при вирішенні задач методом 

СЕ і складається з підпрограм формування матриць розв’язувальних рівнянь 

та вектору правих частин, а також підпрограм рішення системи рівнянь [31]. 

Існує два підходи формування глобальної матриці жорсткості конструкції. 

При першому методі матриця формується з матриць жорсткості скінченних 

елементів з подальшим підсумуванням по однойменнм вузлам. У другому 

методі система рівнянь формується по рядках з коефіцієнтів матриці 

жорсткості СЕ, що примикають до поточного вузла. 

Алгоритм формування системи розв’язувальних рівнянь наступний: 

1. Визначається дійсний номер індексної решітки. 

2. Обчислюються коефіцієнти матриці жорсткості за формулою: 

 

[ ] [ ] [ ]
TT Ts t s ijkl t s T t

ij klK A F H F A A F H Fθ
θ θ

′ ′ ′ ′ ′ ′             = +              .   (3.1) 

 

3. Визначається відносні номери вузлів індексної решітки по сітковим 

координатам елемента. 
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4. Значення коефіцієнтів заносяться в масив ),,()( lnmRM N . Для 

одного вузла сіткової області обчислюється 3 x 3 x 27 = 243 коефіцієнта. 

При однойменних варіаціях переміщень N-ого вузла коефіцієнти 

підсумовуються: 

( ) ( )

1
( , , ) ( , , )

EN N

r
RM m n l RM m n l

=
= ∑ , 

де Е – число СЕ, що примикають до вузла N14 (рис. 3.4). 

 

 
Рис. 3.4 – Просторова індексація скінченно-елементної решітки 

 

5. Виконується розсилка коефіцієнтів матриці в матрицю системи 

розв’язувальних рівнянь: 

 

( ) ( )

1
( , , ) ( , , )

EN N
r

r
RM m n l RM m n l

=
= ∑ . 

 

Між індексами існує наступна відповідність: 
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дійсний номер – 1 1
3

iN INT − = + 
 

; 

напрям реакції – ( )3 1m i N= − − ; 

номер вузла, що зміщується – 1 1
3

c jN INT − = + 
 

; 

напрям вузла, що зміщується – ( )3 1cm j N= − − ; 

відносний номер індексної решітки – 14cl N N= − + . 

Система лінійних алгебраїчних рівнянь, яка побудована таким чином, 

симетрична і має стрічковий вид: 

 

{ } { }ij i
jK u P  =   (3.2) 

 

Друге завдання блоку – це рішення системи (3.2) модифікованим 

блоковим методом Гауса для стрічкових, симетричних матриць, або іншим 

точним, наближеним методом (комплекс допускає розширення). 

Процедура формування матриці системи розв’язувальних рівнянь 

включає в себе МСЕ процедуру, що повторюється для кожного скінченного 

елементу – інтегрування по області СЕ. Для пакету прикладних програм 

“МІРЕЛА+” ця процедура виконується за квадратурною формулою Гауса з 

використанням поліному Лежандра і кількість обчислюваних інтегральних 

сум залежить від кількості точок інтегрування. Для лінійних просторових СЕ 

таких точок щонайменше вісім. Час виконання процедури формування 

системи розв’язувальних рівнянь в тому числі визначається кількістю часу 

на формування матриці жорсткості скінченного елементу. Якщо формування 

глобальної матриці потребує почергового заповнення для кожного вузла 

розрахункової сітки, то процедуру формування матриць жорсткості 

елементу можна прискорити за рахунок виконання паралельних обчислень. 
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Для побудови паралельного алгоритму використано бібліотеку 

OpenMP. OpenMP являє собою набір директив компілятора, процедур та 

змінних середовища, призначених для паралельного програмування на 

машинах зі спільною пам'яттю. Паралельне виконання за моделлю Fork and 

Join лягає в основу архітектури бібліотеки (рис 3.5).  

Усі програми OpenMP починаються як єдиний процес, який 

називається головним потоком. Цей головний потік виконується послідовно 

доки не зустрінеться паралельна область. У цей момент головний потік 

“розгалужується” на кілька паралельних робочих потоків. Інструкції в 

паралельній області виконуються групою робочих потоків. У кінці 

паралельної області потоки синхронізуються та об’єднуються в єдиний 

головний потік. Щоб максимізувати продуктивність об’єднано вкладені 

цикли обчислення інтегралу. Потік керування для циклу додає накладні 

витрати на необхідну логіку.  

В рамках OpenMP для реалізації подібної схеми виконання 

застосовується директива DO перед циклом. Опція SCHEDULE(STATIC) 

задає блочно-циклічний розподіл ітерацій блоками розміром, що 

визначається діленням числа ітерацій на число потоків. 

Пара директив !$OMP DO/!$OMP END DO забезпечують паралельне 

виконання циклу. Таким чином цикл do – loop розподіляється між різними 

потоками: кожен потік обчислює свою частину ітерацій. Наприклад, якщо 

використовується 10 потоків, то, як правило, кожен потік виконує 

обчислення 100 ітерацій циклу do – loop: потік 0 обчислює від 1 до 100, потік 

1 від 101 до 200 і так далі (рис. 3.6). 

Щоб зменшити деталізацію проблеми та зменшити накладні витрати, 

пов’язані зі створенням і завершенням потоку, зазвичай розпаралелюють 

крайні цикли в алгоритмі, що в нашому конкретному випадку відповідає 

розпаралелюванню циклу над елементами в операції збирання. На рис. 3.7 

представлено блок – схему паралельного алгоритму OpenMP. 



73  

 

 

Рис. 3.5 – Модель Fork and Join 

 

 
 

Рис. 3.6 – Графічне зображення загального принципу роботи 
директиви !$OMP DO/!$OMP END DO 
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Рис. 3.7 – Блок-схема паралельного алгоритму чисельного інтегрування 

 

Алгоритм обчислення компонентів матриці жорсткості СЕ: 

 
!$OMP PARALLEL PRIVATE(CK) 
!$OMP DO PRIVATE( MK, SIO, SIG, EPO, FI, F, S, ST, 
            ,STT, ET, JRR, II, JJ, JCK, ICK, O1, O2, O3, Q1, Q2, 
            ,Q3, GKDOP, GK, GN, VT, AT, P, FII, PDOP, CNT, T, AQ, 
            ,CN, I, J, K, IJ, IJJ, M, N, IJK) 
             DO 121 I=1,KT1 
             DO 121 J=1,KT2 
             DO 121 K=1,KT3 
             IJK=I+KT1*(J-1)+KT1*KT2*(K-1) 
         . . . 
Обчислення інтегральних сум у точках інтегрування з індексами (I,J,K)  
        . . . 
             MK=MK+1 
!!$OMP CRITICAL 
c Послідовна частина коду 
             RMNSS(MK,IJK)=RMNSS(MK,IJK)+RMNLI(F,S)*AQ 
!!$OMP END CRITICAL 
    200   CONTINUE 
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    121   CONTINUE 
!$OMP END DO 
!$OMP END PARALLEL 
 
Директива PRIVATE дозволяє визначити такі змінні (масиви), що 

повинні бути локальними для кожного потоку. При вході в паралельну 

область для кожного потоку створюється окремий екземпляр, який не має 

ніякого зв'язку з оригінальною змінної поза паралельної області За 

замовчуванням компілятор визначає змінні, які були проініціалізовані до 

паралельної секції як спільні (SHARED) для всіх потоків виконання. 

Перед завершенням циклу виконується процедура виводу результатів 

розрахунку, що повинна виконатися в тому самому порядку, як і в 

послідовній версії циклу. Процедуру послідовного доступу за вихідним 

порядком забезпечує директива ORDERED. 

 

3.1.3 Постпроцесор – представлення результатів розв’язку  

Результатом розв'язання системи (3.2) є вектор вузлових переміщень 

{uj}. По обчисленому вектору вузлових переміщень {uj} визначаються 

компоненти тензора деформацій εij у центрах СЕ в декартовій системі 

координат відповідно до формули (3.3) – компоненти для тензора малих 

деформацій, який використовується в лінійній теорії пружності: 

 

( )1
2

m m
ij j i m i j mc u c uε = ∇ + ∇ . (3.3) 

1 2 3
11 1 1 1 1 2 1 1 3 1u c u c u cε ∆ ∆ ∆= + + , 

1 2 3
22 2 1 2 2 2 2 2 3 2u c u c u cε ∆ ∆ ∆= + + , 

1 2 3
33 3 1 2 3 2 2 3 3 2u c u c u cε ∆ ∆ ∆= + + , 
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1 2 3 1 2 3
12 21 2 1 1 2 2 1 2 3 1 1 1 2 1 2 2 1 3 2

1 ( )
2

u c u c u c u c u c u cε ε ∆ ∆ ∆ ∆ ∆ ∆= = + + + + + , 

1 2 3 1 2 3
13 31 3 1 1 3 2 1 3 3 1 1 1 3 1 2 3 1 3 3

1 ( )
2

u c u c u c u c u c u cε ε ∆ ∆ ∆ ∆ ∆ ∆= = + + + + + , 

1 2 3 1 2 3
23 32 3 1 2 3 2 2 3 3 2 2 1 3 2 2 3 2 3 3

1 ( )
2

u c u c u c u c u c u cε ε ∆ ∆ ∆ ∆ ∆ ∆= = + + + + + . 

 

Компоненти тензора перетворення координат i
kс  визначаються 

відповідно до формули (3.4): 
i

i
k k

zс
ξ
∂

=
∂

 (3.4) 

 

Беручи до уваги (2.3) (2.21) отримуємо:  

 

{ } { } { } [ ] { }, ,
T T Ti i i

k k kс N z A zψ= = . 

 

 

 

 

 

 

 

 

Рис. 3.8 – Просторова нумерація вузлів СЕ 

 

Для лінійного елемента градієнти деформацій обчислюються в центрі 

СЕ (рис. 3.8) через вузлові переміщення u(nk , i) за формулами: 
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( )1 2 4 6 8 1 3 5 7
1 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,
4iu u n i u n i u n i u n i u n i u n i u n i u n i∆ = + + + − − − −

( )2 3 4 7 8 1 2 5 6
1 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,
4iu u n i u n i u n i u n i u n i u n i u n i u n i∆ = + + + − − − −  

( )3 5 6 7 8 1 2 3 4
1 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,
4iu u n i u n i u n i u n i u n i u n i u n i u n i∆ = + + + − − − −  

 

де nk – глобальні номери вузлів СЕ.  

Компоненти тензора напружень також обчислюються в центрі СЕ за 

співвідношеннями: 

 
11

112σ µε λθ= +  ; 

11 22 33( ) / 3θ ε ε ε= + + ; 

22
222σ µε λθ= + ; 

33
332σ µε λθ= + ; 

12 21 13 31 23 32
12 13 232 ; 2 ; 2σ σ µε σ σ µε σ σ µε= = = = = = . 

 

В рамках OpenMP для реалізації подібної схеми виконання 

застосовується директива DO перед циклом. Опція SCHEDULE(STATIC) 

задає блочно-циклічний розподіл ітерацій блоками розміром, що 

визначається діленням кількості ітерацій на кількість потоків: 

 
!$OMP PARALLEL PRIVATE(SIG, SN) 
!$OMP DO SCHEDULE(STATIC) ORDERED 
         DO 1 I=1,NMS 
         IF(NF(I).LT.10) THEN 
         DO J=1,9 
         SIG(J)=0.D0 
         END DO 
         ELSE 
         CALL SIGKE3(U,X,T,NF,I,NUX,NMS,D,SIG,AT,EN,SN) 
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         DO J=1,9 
         SIG(J)=SIG(J)+SN(J)*DN 
         END DO 
         ENDIF 
!$OMP ORDERED 
         WRITE(4,20)I,U(I),U(I+NUX),U(I+NUX*2),SIG(1), 
       *SIG(2),SIG(3),SIG(5),SIG(6),SIG(9) 
!$OMP END ORDERED 
      1  CONTINUE 
 
Перед завершенням циклу виконується процедура виводу результатів 

розрахунку, що повинна виконатися в тому самому порядку, як і в 

послідовній версії циклу. Поведінку послідовного доступу за вихідним 

порядком забезпечує директива ORDERED. 

Результати аналізу конструкцій представлено у вигляді таблиць, що 

містять інформацію про вузлові переміщення та напруження на поверхні або 

в центрах скінченних елементів. Додатково результати можна візуалізувати 

за допомогою муарових смуг, ізоліній або поверхонь, що відображають 

функції переміщень та напружень на зовнішній границі області або у 

визначених перетинах. Графічна репрезентація виконана у вигляді 

напівтонових або кольорових зображень, де кожному відтінку або кольору 

відповідає певний числовий діапазон значень відповідної функції [52, 45]. 

 

3.2 Алгоритми розв’язку задач механіки 

3.2.1 Нелінійні задачі механіки конструкцій 

При моделюванні поведінки конструкцій в широкому діапазоні 

навантажень досить часто виникає необхідність враховувати нелінійний 

характер процесів деформування. Наприклад, конструкції з еластомерів або 

композитів з еластомерною матрицею здатні до великих зворотних 

деформацій, тому для описання процесів деформування необхідно 
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використовувати тензор скінченних деформацій [100]. 

В базисній системі координат тензор скінченних деформацій має 

вигляд: 

 

( ), , , ,
1
2

n n n
ij i n j j n i n i ja u a u u uε = + + ,   (3.5) 

 

де  ,

n
n n
i ii

za z
ξ
∂

= =
∂

 – тензор перетворення координат. 

Компоненти тензора приросту деформації можна представити у 

вигляді лінійної і нелінійної складових: 

 
л н

ij ij ijε ε ε= + .      (3.6) 

 

В загальному вигляді для напружень також можна виділити лінійну та 

нелінійну складову:  

 
ij ij ij

л нσ σ σ= + .     (3.7) 

 

Варіація енергії деформування в такому випадку має вигляд: 

 

( ) ( )ij ij л н
л н ij ij

V
W dvδ σ σ δ ε ε= + + =∫∫∫  

( )ij л ij н ij л ij н
л ij л ij н ij н ij

V V
dv dvσ δε σ δε σ δε σ δε= + + +∫∫∫ ∫∫∫ .   (3.8) 

 

Закон стану для нелінійного матеріалу визначається за особливостями 

поводження матеріалу у реальних умовах навантаження.  

Наприклад, для слабкостисливих гіперпружних матеріалів 
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використовуються закони Ліндлі, Пенга-Ландела або модифікованій закон 

Гука [35]. 

Варіація роботи зовнішніх сил має вигляд: 

 
i i

i i
V S

A F u dv Q u dsδ ρ δ δ= +∫∫∫ ∫∫  ,    (3.9)   

 

де перший доданок – робота об’ємних сил, що діють на тіло, а другий 

доданок – робота поверхневих сил.  

Рівняння рівноваги має вигляд: 

 

( ) ( )ij ij л н i i
л н ij ij i i

V V S
W dv F u dv Q u dsδ σ σ δ ε ε ρ δ δ= + + = +∫∫∫ ∫∫∫ ∫∫ .       (3.10) 

 

Співвідношення (3.10) є системою нелінійних рівнянь відносно 

компонент вектору переміщень. 

Для розв’язку використовується модифікований метод Ньютона-

Канторовича [53]. Систему (3.10) можна представити у вигляді: 

 

( )( ) 0T T T kδ δ δ+ − =u Ku u N u u R ,     (3.11) 

 

де u – вектор переміщень, K – оператор лінійної частини рівняння (3.10), 

N= N(u) – оператор нелінійних добавок, P(k)
 – вектор узагальнених 

навантажень на кожному кроці навантаження.  
 

( )2T ik jl л л л ij л
kl ij ij

V
g g g dvδ µ ε δε λθ δε= +∫∫∫u Ku , 

( )( )T ij н ij л ij н
л ij н ij н ij

V
dvδ σ δε σ δε σ δε= + +∫∫∫u N u , 
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( )T k i i
i i

V S
F u dv Q u dsδ = ρ δ + δ∫∫∫ ∫∫u P .   (3.12) 

 

На кожному кроці ітераційного процесу переміщення обраховуються 

як сума переміщень, отриманих на попередній ітерації, і поправок, 

зумовлених нев’язками. Нев’язки визначаються нелінійними добавками до 

вектору навантаження: 

 

( )( ) ( ) ( )
( 1) ( )
k k k
i i+ = − +Ku N u P ,   (3.13) 

 

де ( )
( )
k
iu  – наближений вектор переміщень на i – й ітерації на k – му кроці 

навантаження. 

Для обрахування нев’язок необхідно на кожні наступній ітерації 

обчислити додатковий вектор навантаження N з нелінійними 

характеристиками тензорів деформацій та напружень, отриманим на 

попередній ітерації. Фактично вектор додаткового навантаження - це вектор 

вузлових реакцій, для обчислення якого необхідно проінтегрувати суму 

добутків , ,
n

n i ju u . У випадку, коли базисна та місцеві системи координат 

прямокутні декартові, то задача спрощується, оскільки компоненти 

нелінійної частини тензору деформацій можна обчислити як суму добутків 

часткових коваріантних похідних компонент вектора переміщень , ,n i n ju u , 

що були отримані на попередній ітерації. 

Інтегрування за об’ємом елемента включає в себе обчислення 

інтегральних сум в точках інтегрування Гауса-Лежандра. Цей процес 

розбивається на паралельні потоки: 

 
!$OMP PARALLEL PRIVATE(CK) 
!$OMP DO PRIVATE(MK,SIO,SIG,EPO,FI,F,S,ST, 
          ,STT,ET,JRR,II,JJ,JCK,ICK,O1,O2,O3,Q1,Q2, 
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          ,Q3,GKDOP,GK,GN,VT,AT,P,FII,PDOP,CNT,T,AQ, 
          ,CN,IK,JK,KK,IJ,IJJ,M,N,IJK) 
            DO 12121 IJK=1,KT123 
            CALL CKPRO(UK,MN,MNL,V,O1,O2,O3) 
            CALL CKPRO(CK,MN,MNL,WX,O1,O2,O3) 
            DO 10 IA=1,3 
            DO 10 JA=1,3 
            AN=0.D0 
            AA=0.D0 
            DO 20 KK=1,3 
            AA=AA+UK(KK,IA)*CK(KK,JA)+ 
          +UK(KK,JA)*CK(KK,IA) 
            AN=AN+UK(KK,IA)*UK(KK,JA) 
      20  CONTINUE 
            FI(IA,JA)=(AA+AN*DN)*0.5D0/24.D0 
      10  CONTINUE 
            . . . 
        Обчислення сум та визначення вузлових реакцій від  
        нелінійних складових напружень c та деформацій 
            . . . 
            DO 400 MMM=1,3 
            NU=(MM-1)*3+MMM 
            DO 401 LL=1,6 
    401  F(LL)=EPO(LL,NU) 
            AGP=RMNLI(F,S) 
            QQ(MU,MMM)=QQ(MU,MMM)-AGP*AQ 
            QRI(MU,MMM)=QRI(MU,MMM)+AGP*AQ 
    400  CONTINUE 
12121  CONTINUE 
!$OMP END DO 
!$OMP END PARALLEL 

 
Таким чином після виконання цієї процедури отримуємо скорегований 

вектор правої частини системи рівнянь. На кожній наступній ітерації 

отримуємо уточнений вектор переміщень. 

На кожній ітерації перевіряються умови рівноваги та обчислюються 

нев’язки. При досягненні максимально допустимих абсолютних значеннях 

нев’язок проводиться перерахунок поля координат та матриці жорсткості 

конструкції в проводиться обрахунок на наступному кроці навантаження. 

Для розв’язування задач з великими нелінійностями використовується 

комбінований алгоритм, створений на основі модифікованого методу 
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Ньютона-Канторовича та методу спуску за параметром [52]. В якості 

параметру спуску обирається приймається або навантаження, або 

переміщення. В рамках цього алгоритму передбачена процедура 

корегування кроку за навантаженнями (або за переміщеннями у випадку 

вимушених переміщень).   

 

3.2.2 Задача теплопровідності  

Формування вихідних даних для задачі теплопровідності відбувається 

за тією ж процедурою, як і для задачі пружності. Проте на відміну від задачі 

пружності температура в точках скінченних елементів є одновимірним 

масивом.  

Для загального випадку розміри сіткової області задаються трьома 

натуральними числами, що відповідають максимальній кількості вузлів 

кожного напрямку М1, М2, М3. 

Обирається закон апроксимації функції температури. Задаються 

геометричні параметри твердого тіл. Формується поле координат  

Інформація про топологію конструкції задається у вигляді поля 

признаків NFT за допомогою підпрограми TELOS: 

CALL TELOS (N1, N2, N3, K1, K2, K3, NFТ), 

В задачах теплопровідності граничні умови можуть бути 1-го,  2-го, 3-

го роду, а також змішані (наприклад, на різних частинах поверхні мер 

можуть бути різні граничні умови). Задаються граничні умови за допомогою 

підпрограми ZAKREP:  
CALL ZAKREP ( N1, N2, N3, K1, K2, K3, F, NFТ). 

Для розв’язання задачі теплопровідності необхідно побудувати 

матриці H,  H(st) згідно рівняння (2.44), для чого у відповідних підпрограмах 

формування матриць (2.44) необхідно виконувати процедуру інтегрування 
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по об’єму скінченного елементу. 

Паралельний алгоритм обчислення матриці H: 
!$OMP PARALLEL PRIVATE(CK) 
!$OMP DO PRIVATE(MK, FB, FA,FAA,QQ,QQC,QQRO,QCRO 
        TA,TB,CK,CN,GK,GN,QV,T,JJ,JCK,ICK, O1,O2,O3,Q1,Q2, 
       ,Q3,VT,AT,P,AQ,IK,JK,KK,IJ,IJJ,M,N,IJK,ALA) 
        DO 121 IK=1,KT1 
        DO 121 JK=1,KT2 
        DO 121 KK=1,KT3 
        IJK=IK+KT1*(JK1-1)+KT1*KT2*(KK-1) 
        . . . 

            Обчислення інтегральних сум у точках інтегрування  
       . . . 
        MK=MK+1 
!!$OMP CRITICAL 
c Послідовна частина коду 
        AGPST(IJK)=TA*TB*HH*AQPODIN(GN,FA,FB,ALAM)*AQ 
        RMNDTS(MK,IJK)=RMNDTS(MK,IJK)+TA*TB*QCRO 
!!$OMP END CRITICAL 
 200  CONTINUE 
 121  CONTINUE 
!$OMP END DO 
!$OMP END PARALLEL 
 

Паралельний алгоритм обчислення матриці H(st):    
!$OMP PARALLEL PRIVATE(CK) 
!$OMP DO PRIVATE(MK,FB,FA,FAA,QQ,QQC,QQRO,QCRO 
       ,TA,TB,CK,CN,GK,GN,QV,T,JJ,JCK,ICK,O1,O2,O3,Q1,Q2, 
       ,Q3,VT,AT,P,AQ,IK,JK,IJ,IJJ,M,N,IJK,ALAM) 
        DO 121 IK=1,KT11 
        DO 121 JK=1,KT22 
        IJK=IK+KT11*(JK-1) 
      . . . 
Обчислення поверхневого інтегралу 
     . . . 
        MK=MK+1 
!!$OMP CRITICAL 
c Послідовна частина коду 
        RMNTTS(MK,IJK)=RMNTS(MK,IJK)+TA*TB*HH*AQ 
!!$OMP END CRITICAL 
 200  CONTINUE 
 121  CONTINUE 
!$OMP END DO 
!$OMP END PARALLEL 
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У випадку нестаціонарної задачі теплопровідності розв’язок зводиться 

до обчислювальної процедури, що передбачає покрокове визначення 

температури при відповідному часовому інтервалі. Процес розв’язування 

системи рівнянь у такому випадку продовжується до тих пір поки не 

виконається умова сталості поля температур на двох послідовних кроках за 

часом: 

( 1) ( )n nT T ε+ − ≈ , 

де ε – точність наближення. 

 

3.2.3 Зв’язана задача термопружності 

В загальному випадку зв’язана задача термопружності вимагає 

урахування всіх факторів взаємного впливу механічних і теплових полів, до 

того ж урахувати не стаціонарність такої взаємодії. Задача дещо 

спрощується для випадку дії циклічних навантажень за рахунок спрощення 

процедури інтегрування за часом. 

Розглянемо процес визначення температури дисипативного розігріву 

конструкцій як розв’язання зв'язаної задачі термопружності для сталого 

режиму циклічного деформування і теплообміну з навколишнім 

середовищем. У цьому випадку розв’язання квазістатичної задачі 

термопружності вимагає розв’язання кількох задач: визначення функції 

внутрішніх джерел в пружно-спадковому тілі (розв’язання задачі 

термопружності) при початковій температурі; розрахунок температурного 

поля при заданих граничних умовах (розв’язання задачі стаціонарної 

теплопровідності); розв’язання задачі термопружності для кінцевої 

температури саморозігріву. При побудові математичної моделі задачі 

вважається, що напружений стан істотно залежить від координат, наслідком 

чого поле джерел тепла і температури є неоднорідним. Рішення зв'язаної 
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задачі можна знайти за допомогою ітераційної процедури послідовного 

наближення [99]. 

Алгоритм розв'язання зв'язаної задачі представляється такою 

послідовністю вирішуваних завдань [36]: 

1.  З розв’язання задачі термопружності =Ku P  визначається 

вектор вузлових переміщень u при заданій амплітуді коливань. Вектор 

правої частині P визначається по матриці жорсткості з урахуванням 

початкових напружень і граничних умов у вигляді переміщень на поверхні 

СЕ. Для окремого СЕ вектор внутрішніх зусиль визначається за формулою: 

 

T sT ijkl t T sT t
ij kl t kl t

θ
θ= +P A F E F Au A F E F Au ,   (3.14) 

 

де перший доданок - вектор обумовлений пружними переміщеннями, другий 

доданок - вектор сил, обумовлений тепловими переміщеннями. 

2. Для визначення потужності внутрішніх джерел теплоутворення 

необхідно визначити величину розсіяної енергії за цикл навантаження. 

Для обчислення дисипативної складової роботи при деформуванні тіла 

використовують різні підходи.  

Використання найпростіших гіпотез про однорідність поля 

переміщень в напрямку армування і однорідності поля узагальнених сил для 

зсувних напружень і напружень, нормальних до волокон, дозволяє 

обчислювати потужність внутрішніх джерел теплоутворення як осереднену 

величину для  𝑘𝑘 - го шару, що дорівнює дисипованій енергії [26, 36, 52]: 

 
( ) ( ) 0 ( )

( )
k k T k

o kw = σ ψ σ , ,    (3.15) 

 

де      ( )kσ   – тензор напружень; 
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0
( )kψ  тензор пружно-дисипативних характеристик композиту в системі 

координат армування шару. 

Потужність внутрішніх джерел для циклічного навантаження можна 

також визначити за формулою [34]: 

 

( )
( )

( )
2

0
02

k kij
ijkw dt

π
ωω σ ε

π
= ∫  .    (3.16) 

 

3. З розв’язання задачі стаціонарної теплопровідності  визначається 

поле температур. 

Задача теплопровідності є нелінійною, оскільки  матриця H та вектор 

еквівалентного теплового навантаження R залежать від температури. На 

кожній ітерації послідовного наближення виникає необхідність перерахунку 

матриць жорсткості та теплопровідності. 

Система розв’язувальних рівнянь стаціонарної теплопровідності з 

використанням методу послідовних наближень записується у вигляді (2.47). 

Процес ітераційного розв'язання завдання триває до досягнення 

необхідної точності обчислень 𝜀𝜀 за умовою [34]: 

 

( ) ( 1)

( )

k k

k

T T
T

ε−−
≤ .     (3.17) 

 

Для досягнення заданої точності зазвичай достатньо двох-трьох 

ітерацій. 

Після визначення температури процедура починається з 1-го пункту. 

У тому випадку, коли фізико-механічні властивості матеріалу залежать від 

температури, на кожній ітерації проводиться перерахунок компонент 
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тензорів пружних характеристик, теплопровідності, а також компонент 

матриць жорсткості і теплопровідності конструкції. 

 

Висновки до розділу 3 

Розроблено підхід до використання паралельних обчислень в методі 

скінченних елементів в рамках підсистем пакету прикладних програм 

“МІРЕЛА+”.  

При формуванні матриць розв’язувальних систем рівнянь 

запропоновано паралелізацію обчислення компонентів матриць скінченного 

елементу. Розроблено і реалізовано алгоритми паралельного обчислення 

матриць жорсткості та теплопровідності скінченного елемента для задач 

пружного та термопружного деформування конструкцій.  

Розроблено паралельну процедуру обчислення параметрів 

напруженого стану за результатами скінченно-елементного розв’язку. 

На основі використання паралельних обчислень розроблено і 

реалізовано алгоритми розв’язку нелінійних задач пружності, задач 

теплопровідності та зв’язаної задачі термопружності. 

Для програмної реалізації запропонованого методу розв'язання 

завдань було використано мову програмування Fortran 2018 та компілятор 

Intel Fortran Compiler, а також використано бібліотеку паралельного 

програмування в системах зі спільною пам'яттю OpenMP. 
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4 ЗАСТОСУВАННЯ АЛГОРИТМІВ ПАРАЛЕЛЬНИХ 

ОБЧИСЛЕНЬ У ЗАДАЧАХ МЕХАНІКИ 

4.1 Напружено-деформований стан шаруватої плити 

Розглянемо квадратну тришарову плиту під дією згинального 

навантаження. 

Квадратна тришарова плита з транверсально-ізотропними шарами 

знаходиться під дією нормального навантаження, прикладеного до верхньої 

поверхні плити: 

( ) ( ) 32
1 1 sin sinn n xxP P

a a
ππ

= . 

Відносний розмір у плані a/h=7, де h – загальна товщина пакету шарів. 

Товщина внутрішнього шару h2 = 0,5 h, товщини зовнішніх шарів h1 =0,4h, 

h3 =0,1h. На бічних гранях плити задовольняються граничні умови типу 

Нав’є, яким у рамках побудованих моделей відповідають шарнірно рухливе 

закріплення контуру. Кожний шар являє собою композитний матеріал, 

армований односпрямованими волокнами. У зовнішніх шарах (k = 1, 3) 

напрямок волокон збігається з віссю х3, механічні характеристики 

наступні [70]: 

𝐸𝐸3 = 172 ⋅ 103МПа; 𝐸𝐸1 = 𝐸𝐸2 = 6,9 ⋅ 103МПа; 

 𝐺𝐺13 = 𝐺𝐺23 = 3,45 ⋅ 103МПа;  

𝐺𝐺12 = 1,38 ⋅ 103МПа; 

𝜈𝜈21 = 𝜈𝜈31 = 𝜈𝜈23 = 0,25.  

Характеристики внутрішнього шару (k =2) виходять заміною нижніх 

індексів 1 ↔ 2.  

Проведено розрахунок з використанням традиційної (послідовної) 

схеми обчислення матриць жорсткості та з використанням паралельного 



90  

алгоритму побудови метриці жорсткості. Результати обчислення 

напружено-деформованого стану представлені на рис. 4.1 – 4.5.  
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переміщень в площині симетрії 
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Особливий інтерес представляють дотичні напруження, зумовлені 

анізотропією механічних властивостей шаруватої конструкції. Отримані 

результати задовільно співпадають з результатами, представленими в 

роботі [70].  

На рис. 4.6. представлено графічне порівняння швидкості розрахунку 

при різних розмірах розрахункової сітки результати обчислень, де t0 – час 

розрахунку за традиційною схемою, t – час розрахунку за паралельним 

алгоритмом, N – розмір розрахункової сітки СЕ.   

Для розрахунку використано обчислювальний комплекс “МІРЕЛА+” 

із застосуванням моментної схеми скінченних елементів.  
 

 

 

 

 

 

 

 

 

 

 

 

Рис. 4.6 – Порівняння швидкості виконання для сіток з різною 
кількістю скінченних елементів 

 

Розроблена методика формування матриць жорсткості на основі 

використання паралельних обчислень інтегральних квадратурних 

складників дозволяє прискорити процес розв’язування задач механіки 

конструкцій. При збільшенні розрахункової сітки різниця в часі 

наближається до 10%. Використання системи паралельних обчислень на 

основі схеми зі спільною пам’яттю підвищує ефективність розробленого 
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пакету прикладних програм “МІРЕЛА+”. 

 

4.2 Термопружне деформування композитного обтікача 

Розглянемо задачу термопружності шаруватого обтікача. Обтікач має 

форму параболоїда, поверхня якого задається рівнянням z= –0,175 r2+70 

(рис. 4.7). Оболонка обтікача складається з 24 графітно-епоксидних шарів. 

Кожен шар моє товщину 1,25мм, що забезпечує сумарну товщину 30мм. 

Волокна намотуються або в окружному, або в меридіональному напрямку. 

Тепловий потік через зовнішню поверхню змінюється від q1 до q4, де 

q1 = 0,3Вт/мм2; q2 = 0,01Вт/мм2; q3 = 0,001Вт/мм2; q4 = 0,0001Вт/мм2. 

Температура внутрішньої поверхні серцевини дорівнює нулю. 

Коефіцієнти теплопровідності λ11 = 0,08Вт/(мм⋅К), λ22 = λ33= 0,008Вт/(мм⋅К) 

Температурні поля і поля напружень, що виникають в обтікачі при 

накладенні зазначених граничних теплових умов, при різній орієнтації 

волокон и послідовностях укладки шарів представлені на рис. 4.8 – 4.12. 

 

 

 

 

 

 

 

 

 

 

 

Рис. 4.7 – Розрахункова схема обтікача 
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Результати обрахунку для випадку укладки 12 шарів волокон в 

меридіональному напрямку та 12 шарів в окружному напрямку (012/9012) 

наведені  на рис. 4.8 – 4.13. 
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Результати обрахунку для випадку укладки 12 шарів волокон в 

окружному напрямку та 12 шарів в меридіональному напрямку (012/9012) 

наведені  на рис. 4.14 – 4.19. 
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Результати розв’язку задачі достатньо близько співпадають з даними 

роботи [66], отримані для осесиметричної постановки. Спосіб укладки 

волокон сильно впливає на розподілення температур та термічних 

напружень. При меридіональній укладці волокон величина максимальної 

температури практично в п’ять разів менше, ніж при укладці волокон в 

окружному напрямку. Розподілення компонент температурних напружень 

має значний градієнт при односпрямованій укладці волокон. Мінімальний  

розбіг напружень виходить при перехресному намотуванні волокон. 

Досліджено вплив використання паралельної схеми формування 

матриць жорсткості та теплопровідності анізотропної конструкції на час 

розв’язування задачі. Для виводу результатів використано паралельну схему 

обрахунку напружень за значеннями переміщень, отриманими у ході 

розв’язку. На рис. 4.20 представлено залежності часу розв’язку від кількості 

розрахункових вузлів. 
 

 

Рис. 4.20 – Час розв’язку для різної кількості вузлів: 1 – традиційна 
схема; 2 – схема з паралельними обчисленнями 
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Аналіз результатів показує, для даної задачі, при достатньо малих 

розрахункових сіток (приблизно до 10000 вузлів) немає значної різниці в 

затратах часу на розв’язок. Проте при збільшенні кількості вузлів різниця в 

часі збільшується і досягає 10 – 11% при 16000 вузлів сітки. Але потім 

відсоток виграшу в часі практично не змінюється.  

 

4.3 Визначення звֹ’язаних термомеханічних полів у пневматичних 

шинах 

Розглянемо розв’язання зв’язаної задачі термопружності пневматичної 

шини. Пневматичні шини є складним і досить відповідальним елементом 

конструкції транспортних засобів (автомобілів, тракторів, літаків і ін.). 

Шини забезпечують основні експлуатаційні характеристики автомобілів: 

надійність і довговічність, стійкість і керованість, комфортабельність, 

швидкісні і гальмівні властивості. 

Шина являє собою шарувату конструкцію, що складається з гумових 

деталей різної твердості, а також з гумокордних шарів (каркас, брекер, 

підсилюючі елементи). В процесі експлуатації на шину діє складна система 

динамічних навантажень з боку дороги і автомобіля, в її конструкції 

виникають великі переміщення і деформації. 

В даний час вітчизняна промисловість випускає великогабаритні і 

вантажні шини, призначені для експлуатації в умовах бездоріжжя [54, 55].  

Аналіз руйнувань при експлуатації вітчизняних та зарубіжних 

вантажних та легковантажних шин показує, що значна кількість 

пневматичних шин в експлуатації виходить з ладу в результаті втоми 

матеріалу. Число відмов шин по втомним руйнуванням може досягати 20% 

з ресурсом 75-96% від середнього ресурсу шин в експлуатації. Результати 

експлуатаційного випробувань шин з відновленим рисунком протектора по 
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показали, що для відновлених шин кількість відмов по втомним 

руйнуванням зростає в порівнянні з випробуваннями нових шин, а ресурс 

падає [55]. 

Відомо, що радіальні шини, експлуатовані в поганих дорожніх умовах, 

поступаються по довговічності діагональним. На нерівній дорозі при наїзді 

на перешкоди жорстка конструкція радіальної шини зазнає значних 

деформації, а це, в свою чергу, несприятливо відбивається на металокорді, 

викликаючи передчасний розвиток втомного руйнування. Тому 

вдосконалення і розробка великогабаритних діагональних шин зі 

спеціальним рисунком, що встановлюються на кар'єрних автосамоскидів 

вітчизняного і зарубіжного виробництва, не втратили своєї актуальності. 

Тепловий стан пневматичних шин при коченні надає суттєвого впливу 

на їх довговічність. Максимально допустима швидкість легкових і 

вантажних шин обмежена граничною температурою для гуми. Максимальна 

швидкість великогабаритних і надвеликогабаритних шин обмежена 

величиною 50 км/год, через високі температури, що розвиваються в масиві 

гум шин цього класу. Експлуатаційна температура шин менше 100°С є 

нормальною, від 100 до 120°С - критичною, вище 130°С - небезпечною для 

шини. Тому розрахунок і прогнозування теплового стану шин при 

проєктуванні є необхідною і актуальною задачею. 

Широке застосування самоскидів великої вантажопідйомності 

призвело до необхідності створення та удосконалення великогабаритних 

шин підвищеної експлуатаційної продуктивності. У народному господарстві 

України такі машини  використовуються на транспортних і розкривних 

роботах гірничо-збагачувальних комбінатів при видобутку руди відкритим 

способом. В цілому в світі близько 60% гірничої маси перевозиться 

автосамоскидами, обладнаними великогабаритних і надвеликогабритними 

шинами. 

Гумокордні композити є практично незамінними при виготовленні 
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пневматичних шин. За допомогою шаруватості досягається оптимальне 

співвідношення характеристик жорсткості та демпферних характеристик 

багатьох елементів віброізоляційних систем. Шина являє собою шарувату 

конструкцію, що складається з анізотропних (армованих) та ізотропних 

шарів. Частота армування для кожного шару може бути різною. У реальних 

умовах експлуатації відбувається значний нагрів таких конструкцій. 

При цьому істотний вплив на характер напружено-деформованого 

стану надає залежність фізико-механічних характеристик від температури, 

що призводить до суттєвих змін форми і в ряді випадків до руйнування.  

Для побудови скінченно-елементної моделі пневматичної шини слід 

врахувати її основні конструктивні особливості. Силовою основою шин є її 

каркас. Для діагональної шини каркас виготовляється з перехресно 

армованих гумокордних шарів. Частіше за все матеріалом для корду служать 

віскозні і поліамідні волокна [3,4]. Кути армування складають 45º – 65º, в 

залежності від типу і призначення шини. 

Брекер, розташований в біговій частині шини, виготовляють з 

розріджених гумокордних шарів, зібраних в пакеті перехресним чином. Під 

шарами брекеру нерідко над ним прокладають однорідну прошарку з м'якої 

еластичної гуми. Основне призначення брекера полягає в захисті каркасу від 

негативного впливу контакту з нерівностями опорної поверхні та 

поліпшення зв'язку між каркасом і протектором [54, 55]. 

Протектор являє собою масивний шар гуми і виготовляється з 

жорстких зносостійких гум, що працюють в гранично важких умовах. На 

боковині протектор переходить в досить тонкий гумовий шар, основне 

призначення якого - захист каркасу від зовнішніх пошкоджень. Заворот 

шарів служить для посилення борту, забезпечує жорстку посадку шини на 

обід колеса. 

В даний час використовуються різні схеми опису шини, різні 

математичні моделі та алгоритми розв'язання задачі. Можливий ступінь їх 
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використання різний. В цілому, можна виділити три підходи до 

моделювання шини стосовно до потреб процесу проєктування. 

До першого підходу можна віднести моделі шини у вигляді кільця на 

пружній основі, з тришаровою оболонкою в зоні бігової доріжки і 

ортотропною оболонкою в зоні бокової стінки [3, 4, 54]. 

До другого підходу можна віднести моделювання шини 

багатошаровою ортотропною і анізотропною оболонкою типу Тимошенко. 

При цьому в роботі [51] досліджено сумісний вплив ефекту анізотропії та 

геометричної нелінійності на напружено-деформований стан діагональної 

шини, а для визначення геометрії поверхні приведення були використані 

згладжувальні кубічні сплайни [49, 54]. 

Найбільш точне формулювання задачі термопружності шини 

засновано на застосуванні загальних просторових рівнянь стану конструкції. 

Істотний вплив на характер напружено-деформованого стану надає 

залежність фізико-механічних характеристик від температури, що 

призводять до суттєвих змін форми і в ряді випадків до руйнування. 

Гумокордний шар являє собою односпрямовано армований композит  

Будемо вважати матрицю лінійно-пружною і ізотропною з модулем 

пружності Er, модулем зсуву Gr і коефіцієнтом Пуассона νr. Аналогічне 

припущення зробимо щодо армуючих волокон, позначивши їх пружні 

постійні через Ec, Gc, νc. Коефіцієнт армування, що характеризує відносний  

об'ємний вміст волокон, визначаємо за формулою [14, 36]: 

 

2

04
c

c
d i
h

π
µ =       (4.1) 

 

де    h0 –  товщина армованого шару; 

cd  – діаметр волокон; 
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ci  – частота армування. 

Якщо прийняти припущення, що насичення армуючими волокнами 

досить часте, то з хорошою точністю шар можна вважати трансверсально-

ізотропним, причому площина ( )2 3,x x  – є площиною ізотропії.  

Пружні характеристики шару обумовлені механічними властивостями 

матриці та армуючих волокон. 

Модуль пружності E1 и коефіцієнт Пуассона ν1 для практичних 

розрахунків визначають за формулами: 

 

( )1 1c rE E Eµ µ= + − , 

( )1 1c rν ν µ ν µ= + − .     (4.2) 

 

Модуль пружності поперек волокон можна представити у вигляді: 

 

( ) ( ) ( ) ( )
1

21 1 1 0 1r r

EE α

µ α µ α µ αν ν µ
=
 + − + − − − −   

,   (4.3) 

де c

r

E
E

α = .  

Модуль зсуву в площині армованого шару з достатньою точністю 

можна прийняти рівним: 

 

1 2
1

1 2
r

g gG G
g g µ

µ+
=

−
,    (4.4) 

де  1 ,c rg G G= +  

2 .c rg G G= −  

 

Модуль поперечного зсуву для армованого шару можна прийняти у 



101  

вигляді [52, 157]:  

 

( )1
c r

r c

G GG
G Gµ µ

=
+ −

    (4.5) 

 

Розроблена модель гумокордного шару була використана для 

розрахунку напружено-деформованого стану надвеликогабаритних шин 

різних модифікацій. 

Деформація тіла нерозривно пов'язана зі зміною місткості в ньому 

тепла і, отже, зі зміною розподілу температури в тілі. Анізотропія фізичних 

властивостей і особливості будови викликають труднощі тривимірного 

моделювання процесів деформування, пов'язані, перш за все, із 

встановленням кількості пружних характеристик. Кількість характеристик, 

що визначаються, залежить від виду напруженого стану та анізотропії [19, 

20]. Тому для повного аналізу міцності конструкцій стає актуальним 

визначення величини і характеру розподілу теплових напружень. 

Передбачається, що поле переміщень і температур є суцільним і між шарами 

виконуються умови ідеального теплового контакту. 

У скінченно-елементному формулюванні задача термопружності 

зводиться до розв’язання матричного рівняння Біо. 

Для визначення потужності внутрішніх джерел теплоутворення 

необхідно визначити величину розсіяної енергії за цикл навантаження. У 

загальному випадку питома величина розсіяної енергії дорівнює сумі втрат 

енергії в армуючому волокні і матриці з урахуванням їх об'ємного вмісту: 

 

( )1c rW W W∆ µ∆ µ ∆= + − ,           (4.6) 

 

де μ – об'ємний вміст армуючого матеріалу. 

Гума має досить добре виражені в'язкопружні властивості. Закон 
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стану можна представити у вигляді [160]: 

 

( ) ( )0 sin sin
t

ij ijt t R t dσ σ ω τ ωτ τ
−∞

 
= − − 

 
∫ ,   (4.7) 

 

де   0
0 0
ij ijkl

klCσ ε=  – амплітудне значення. 

 

Ядрами релаксації можуть виступати ядро Ржаніцина або дрібно-

експоненціальна функція Работнова [35, 145]. 

В процесі циклічного деформування робота обчислюється за один 

цикл навантаження конструкції 2T π
=
ω

  за формулою: 

 

ij ij
ij ijdW dt dσ ε σ ε= =       (4.8) 

 

Швидкість деформації беремо за законом: 

 

0 cos .ij ij tε ωε ω=      (4.9) 

 

Підставимо ( )ij tσ  і ( )ij tε  у вираз для в’язкопружного потенціалу. Тоді 

після інтегрування, маємо [32]: 

 

( )

2 2

0 0 2
0

0 0
1 sin cos cos ,ij

ij c ij SW R t t dt R tdt

π π
ω ω

ωσ ω ω ωσ ε ω= − +∫ ∫   (4.10) 
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де   ( )
0

cos ,cR R z zdzω
∞

= ∫     

( )
0

sin .sR R z zdzω
∞

= ∫  

Перший інтеграл у виразі (4.10) за цикл коливання дорівнює нулю, а 

другий являє собою незворотну роботу. 

Тоді за один період коливань кількість енергії в одиниці об'єму 

складає: 

 

0
0
ij

ij sW R∆ πσ ε=      (4.11) 

 

Потужність внутрішніх джерел теплоутворення, якщо врахувати, що 

більша частка енергії, що поглинається трансформується в теплову, можна 

прийняти рівною середньому значенню енергії, розсіяною за один цикл 

коливань. 

Таким чином, коефіцієнт поглинання гуми дорівнює ψ = ωRs. 

Якщо врахувати, що температура саморозігріву впливає на потужність 

внутрішніх джерел, то (4.11) можна записати у вигляді [32, 157]: 

 

( )
( )0 0 0 0

0 0 0 0 0
1 1 3
3 2

T i
S ij j ij S T ij ijw R R B Tω µ ε θ δ ε ω θ α ε ε = − + − 

 
   

 

Якщо релаксує один модуль зсуву, то маємо [31]: 

 

( ) ( ) 0
0 0 0

1
3

T T i
S j ijijw Rω µ ε θ δ ε = − 

 
     

 

Матеріал корду вважаємо абсолютно пружним. 
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Для визначення температурних полів в момент настання теплової 

рівноваги між конструкцією і навколишнім середовищем необхідно 

вирішити задачу теплопровідності.  

Коефіцієнти тензора теплопровідності в системі армування можна 

визначити, користуючись наближеними співвідношеннями: 

 

( )11 1c rλ λ µ λ µ= + − ; 

( ) ( )( )
( ) ( )

r
22 33

1 1
;

1 1
C r

C r

λ λ µ λ µ
λ λ

λ µ λ µ
+ + −

= =
− + +

   (4.12) 

 

де   λс, λr – коефіцієнти теплопровідності волокна і матриці. 

Перетворення тензора теплопровідності в місцеву систему координат 

скінченного елемента проводиться аналогічно співвідношенню (2.28). 

Розглянемо зв'язану задачу термопружності пневматичних шин.  

Вихідні данні для розрахунку шини 18.00: діаметр шини – 1512 мм; 

ширина шини – 480 мм; діаметр ободу – 634 мм; розчин бортів – 330 мм; 

внутрішній тиск – 0,6 МПа; ширина протектору – 390 мм;  

кількість ниток корду основного полотна – 9,4 (1/см);  кількість ниток корду 

розрідженого полотна – 7,4 (1/см); товщина гумованого загального шару 

каркасу – 1,4 мм; товщина гумованого розрідженого шару каркаса – 1,3 мм;  

кількість основних шарів – 16; кількість розріджених шарів - 4; товщина 

гумових прошарків корду каркаса – 0,4 мм; товщина гумових шарів 

брекера – 1,8 мм; кількість шарів брекера – 4; відношення висоти профілю 

до ширини профілю шини – 0,91; відношення розчину бортів до ширини 

профілю - 0,68; відношення ширин бігової доріжки до ширини 

профілю – 081; максимальне навантаження – 50000 кН; діаметр нитки 

корду – 0,76 мм; модуль пружності корду – 1,500 ГПа; модуль пружності 

гуми – 60 МПа; коефіцієнти Пуассона – 049 для гуми, 0,25 для корду; 
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коефіцієнти теплопровідності – 0,159 Вт/(м⋅К) для гуми, 293 Вт/(м⋅К) для 

корду; коефіцієнт лінійного теплового розширення – 0,0001 1/К.  

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 4.21 – Розрахункова схема пневматичної шини 

 

Внутрішній тиск – 0,6 МПа. Швидкість кочення – 50 км/год. Для 

великогабаритних шин типу 18.00 кут армування прийнятий рівним 53°. На 

рис. 4.22 – 4.31 представлені результати розрахунку термонапруженого 

стану шини.  
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Рис. 4.22 – Переміщення u1 Рис. 4.23 – Переміщення u2 
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Рис. 4.24 – Переміщення u3 

 
Рис. 4.25 – Напруження  σ11 
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Рис. 4.26 – Напруження  σ12 

 

Рис. 4.27 – Напруження  σ13 
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Рис. 4.30 – Напруження  σ23 Рис. 4.31 – Температура саморозігріву 
в осьовому перерізі 

Рис. 4.32 – Час розв’язку для різної кількості вузлів: 1 – традиційна 
схема; 2 – схема з паралельними обчисленнями 

 

Дослідження теплових ефектів у великогабаритних шинах є важливим 

завданням при оцінці довговічності конструкції. Розподілу температур 

саморозігріву по масиву шини визначається на підставі розв’язання зв'язаної 
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задачі термопружності. 

На рис. 4.32 представлено порівняння часу обрахунку з використанням 

запропонованого підходу до обчислення матриць жорсткості і 

теплопровідності та з використанням традиційного підходу.  

Аналіз отриманих результатів показує, що використання паралельних 

обчислень  при формуванні матриць жорсткості та теплопровідності, а також 

при обрахунку параметрів напруженого стану, дозволяє скоротити час 

розв’язку задачі термопружності на 7 – 8%. 

 

Висновки до 4 розділу 

На основі розроблених алгоритмів отримано розв’язки практичних 

задач пружності та термопружності. 

Для розв’язку зв’язаної задачі термопружності шаруватої анізотропної 

конструкції отримані співвідношення для визначення теплофізичних 

параметрів шарів. 

Розв’язки отримані для розрахункових сіток різної величини за 

традиційною схемою та з використанням паралельних обчислень. 

Аналіз отриманих результатів показав, що при невеликих розмірах 

розрахункових сіток використання паралельних обчислень майже не 

впливає на час виконання розрахунку. 

При збільшенні розрахункових сіток скінченних елементів 

спостерігається скорочення часу розв’язування задач і в залежності від виду 

задачі зменшення час складає від 7 до 12%.  
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ВИСНОВКИ 

Розроблені в дисертаційній роботі методи використання паралельних 

технологій дозволяють оптимізувати процеси скінченно-елементного 

розв’язування задач механіки. Під час вирішення задач дисертаційного 

дослідження розроблено методику розв’язування задач механіки 

конструкцій з урахуванням лінійного і нелінійного деформування в умовах 

силового і термосилового навантаження. Розроблені підходи до 

розпаралелювання обчислень дозволили отримати до 12% скорочення часу 

розв’язку задач.  

Під час виконання дисертаційного дослідження отримано такі 

результати: 

– вперше розроблено алгоритми паралельних обчислень матриць 

жорсткості скінченних елементів на основі моментної схеми скінченних 

елементів для задач пружності; 

– вперше розроблено паралельні алгоритми обчислення матриць 

теплопровідності для розв’язання задач теплопровідності; 

– отримали подальший розвиток алгоритми паралельних 

обчислень у застосуванні до розв’язування лінійних та нелінійних задач; 

– вперше розроблено застосунок з використанням алгоритмів 

паралельних обчислень пакету прикладних програм “МІРЕЛА+” для 

розв’язання задач термопружності конструкцій. 

Програмну реалізацію наведеної методики розв’язування задач 

написано мовою програмування Fortran 2018 на основі Intel Fortran Compiler 

з використанням бібліотеки паралельного програмування в системах зі 

спільною пам'яттю OpenMP.  
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