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АНОТАЦІЯ 

 

 

Руденко Д. О. Асимптотико-чисельний підхід у прикладних задачах 

механіки, що зводяться до сингулярних диференціальних рівнянь зі 

змінними коефіцієнтами при наявності 𝜹-функції. – Кваліфікаційна 

наукова праця на правах рукопису. Дисертація на здобуття наукового ступеня 

доктора філософії за спеціальністю 113 «Прикладна математика». – 

Запорізький національний університет, Запоріжжя, 2025. 

Дисертаційна робота присвячена використанню гібридного 

асимптотичного підходу (на базі методів збурення і фазних інтегралів) до 

розв’язання задач механіки систем з дискретно-континуальними 

характеристиками та змінними за часом параметрами у нелінійній 

постановці. 

Зокрема, в роботі розглядаються прикладні задачі з нелінійним 

сингулярним диференціальним рівнянням зі змінними розривними 

коефіцієнтами за наявності 𝛿-функції Дірака у правій частині; задачі 

нелінійної динаміки пологих оболонок з функціонально-градієнтних 

матеріалів з параметрами, що змінюються в часі; та задачі динаміки пружної 

системи, де присутня нелінійна функція демпфування та параметри, що 

змінюються з часом, з урахуванням наявності локалізованого зовнішнього 

збурення. 

Основна частина дисертаційної роботи складається зі вступу, 

чотирьох розділів та висновків. 

У вступі обґрунтовано актуальність теми дослідження, 

сформульовано мету та завдання дослідження, описано предмети, методи та 

об’єкти дослідження, зазначено наукову новизну та практичне значення 

отриманих результатів. Описано особистий внесок здобувача у 

дослідженнях, виконаних у співавторстві. Наведено дані про апробацію 
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результатів дисертації та список публікацій, що відображають результати 

дисертації. 

У першому розділі представлено загальний огляд аналітичних та 

чисельних методів, які застосовуються для дослідження диференціальних 

рівнянь з коефіцієнтами різного вигляду. 

Дослідження охоплює наступні теми: 

‒ огляд аналітичних та обчислювальних підходів до розв’язування 

диференціальних рівнянь із змінними коефіцієнтами; 

‒ огляд аналітичних та чисельних підходів до вирішення 

диференціальних рівнянь з розривними коефіцієнтами; 

‒ аналіз потенціалу використання розривного методу Гальоркіна для 

вирішення різноманітних диференціальних рівнянь; 

‒ огляд аналітичних та чисельних підходів до пошуку 

асимптотичних розв’язків рівняння Кортевега‒де Фріса; 

‒ огляд аналітичних і числових способів знаходження розв’язків 

диференціальних рівнянь, що містять дельта-функцію Дірака. 

Другий розділ присвячений розв’язку сингулярних нелінійних, із 

«малим» параметром при старшій похідній, диференціальних рівнянь зі 

змінними розривними коефіцієнтами за наявності 𝛿-функції у правій частині 

за допомогою розвитку гібридного асимптотичного підходу. 𝛿-функція 

Дірака, з механічної точки зору, є інструментом для локалізованого 

зовнішнього впливу. 

Дослідження включає такі теми: 

‒ запропоновано алгоритм наближеного аналітичного розв’язання, 

придатного до вирішення прикладних задач математичної фізики 

із застосуванням методу збурення, який дозволяє оцінити вплив 

нелінійної складової частини рівняння, та комп’ютерної алгебри; 

‒ особлива увага приділена впливу характеру зміни коефіцієнтів 

основного сингулярного диференціального рівняння на ефект 
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наявності 𝛿-функції при першій похідній. Як приклад, розглянуто 

нелінійне диференціальне рівняння типу Дюффінга; 

‒ наведено чисельні результати аналітичних розв’язків, залежно від 

величини параметрів асимптотичного розвинення у двох 

наближеннях; 

‒ порівняння наближеного аналітичного розв’язку із прямим 

чисельним розв’язком досліджуваної задачі; 

‒ надано графічне представлення результатів обчислень основного 

рівняння задачі за прямим чисельним інтегруванням і гібридним 

асимптотичним методом із використанням системи комп’ютерної 

алгебри «Mathematica». 

В третьому розділі запропоновано наближене аналітичне розв’язання 

задачі нелінійної динаміки пологих оболонок з функціонально-градієнтних 

матеріалів з параметрами, що змінюються в часі, з урахуванням впливу 

початкових недосконалостей та локалізованого зовнішнього періодичного 

динамічного навантаження. 

У розділі досліджується аналітичний алгоритм з використанням 

гібридного асимптотичного підходу, на основі методів збурень та фазових 

інтегралів, для розрахунку динамічних характеристик геометрично 

нелінійних систем зі змінними параметрами за наявності 𝛿-функції Дірака. 

Зокрема, розглянуто розв’язання сингулярного лінійного диференціального 

рівняння зі змінними коефіцієнтами у двох основних асимптотичних 

наближеннях: на часовому інтервалі, де спостерігається локалізоване 

збурення (внутрішня асимптотика), та на ділянках за межами області 

локалізації збурення (зовнішня асимптотика). 

Наведено результати числових розрахунків лінійної динаміки пологої 

оболонки при заданому характері локалізованого збурення. 

Основні аналітичні залежності отримано за допомогою системи 

комп’ютерної алгебри «Mathematica». 
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Наведено графіки результатів розрахунків, одержаних за допомогою 

наближеного аналітичного підходу та прямого числового інтегрування 

рівняння задачі. 

У четвертому розділі розглядається аналітико-числовий підхід для 

знаходження розв’язку задачі нелінійної динаміки пружної системи з 

параметрами, що змінюються в часі, та нелінійною функцією демпфування 

𝑛-го степеня. Враховується вплив зовнішнього локалізованого збурення. 

Локалізований зовнішній вплив, котрий змінює параметри системи як у часі, 

так і в просторі, математично зображується за допомогою 𝛿-функції Дірака. 

Описано постановку та розв’язування задачі динаміки пружної 

системи, яка має нелінійну функцію демпфування. У процесі розв’язання 

задачі використовуються метод збурення, метод фазних інтегралів та метод 

варіації довільної сталої. 

Наведено приклад розв’язування задачі динаміки пружної системи, 

що зазнає вільних коливань, з урахуванням нелінійного демпфування та 

локалізованого збурення. 

Аналітичні розрахунки, що було отримано за допомогою програми 

комп’ютерної алгебри «Mathematica», порівнюються з прямим чисельним 

методом аналізу. Співставлення графіків виявляє схожість у траєкторіях 

аналітичних та прямих чисельних обчислень. Деякі розбіжності зумовлені 

використанням першого наближення при побудові графіків. 

Досліджено вплив локалізованого зовнішнього збурення на характер 

нелінійного демпфування досліджуваної системи. Важливо зазначити, що 

підбір параметрів системи дозволяє зменшити ефект зовнішнього 

локалізованого збурення. 

На основі проведеного дослідження за кожним розділом 

сформульовано висновки, а також узагальнено результати роботи і зроблено 

висновки за дисертаційною роботою. 

Таким чином, у дисертаційній роботі розв’язано актуальну проблему 

асимптотичного розв’язання прикладних задач математичної фізики, що 
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описуються сингулярними диференціальними рівняннями зі змінними 

коефіцієнтами з урахуванням 𝛿-функції. 

Наукова новизна отриманих результатів полягає у наступному: 

‒ вперше запропоновано подальший розвиток гібридного 

асимптотичного підходу для отримання наближеного 

аналітичного розв’язку нелінійного диференціального рівняння зі 

змінними коефіцієнтами та 𝛿-функцією у правій частині рівняння; 

‒ вперше отримано наближений аналітичний розв’язок 

диференціального рівняння нелінійної динаміки пологих 

оболонок з функціонально-градієнтних матеріалів з початковими 

недосконалостями та зовнішнім силовим навантаженням; 

‒ вперше запропоновано аналітичний підхід до обчислення 

динамічних характеристик геометрично нелінійних систем із 

демпфуванням зі змінними у часі параметрами з використанням 

дельта-функції Дірака. 

Практична цінність результатів роботи полягає в можливості 

застосування розробленого аналітичного підходу для розв’язання 

прикладних задач математичної фізики з використанням гібридного 

асимптотичного підходу. Такі задачі часто зустрічаються в галузях 

ракетобудівної індустрії, машинобудуванні, радіоелектроніці, авіаційній 

промисловості, будівництві, виробництві двигунів і промислового 

обладнання, робототехніці, а також в інших сферах. 

Ключові слова: 𝛿-функція, асимптотико-чисельний алгоритм, 

гібридний асимптотичний підхід за методами збурення та ВКБ, змінні за 

часом параметри, локалізоване збурення, наближений аналітичний 

розв’язок, нелінійна функція демпфування, полога оболонка, сингулярне 

нелінійне диференціальне рівняння, функціонально-градієнтні матеріали. 
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ABSTRACT 

 

 

Rudenko D. O. Asymptotic-Numerical Approach in Applied Problems of 

Mechanics Reduced to Singular Differential Equations with Variable 

Coefficients in the Presence of 𝜹-Function. – Qualifying scientific work on the 

rights of the manuscript. Dissertation for the degree of Doctor of Philosophy in 

specialty 113 «Applied Mathematics». – Zaporizhzhia National University, 

Zaporizhzhia, 2025. 

The dissertation is devoted to the application of a hybrid asymptotic 

approach based on perturbation and phase integral methods for solving dynamic 

problems in systems of discrete-continuous characteristics and time-varying 

coefficients within a nonlinear framework. 

In particular, the research addresses applied problems with a nonlinear 

singular differential equation with variable discontinuous coefficients in the 

presence of a 𝛿-function on the right-hand side; problems in the nonlinear dynamics 

of hollow shells made of functionally gradient materials with time-varying 

parameters; and problems of dynamics of an elastic system with a nonlinear 

damping function and time-varying parameters, taking into account the presence of 

a localised external perturbation. 

The main part of the dissertation work consists of an introduction, four 

chapters and conclusions. 

The introduction substantiates the relevance of the research topic, 

formulates the purpose and objectives, describes the subjects, methods and objects 

of the research, indicates the scientific novelty and practical significance of the 

obtained results. The applicant’s personal contribution to the research carried out 

in co-authorship is described. Data on the approval of the dissertation results and a 

list of publications reflecting the findings of the research are given. 
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The first chapter provides a comprehensive review of analytical and 

numerical methods applied to study differential equations with coefficients of 

various types. 

The research encompasses: 

‒ an overview of analytical and numerical approaches to solving 

differential equations with variable coefficients; 

‒ an overview of analytical and numerical approaches to solving 

differential equations with discontinuous coefficients; 

‒ an analysis of the potential of the discontinuous Galerkin method for 

solving various differential equations; 

‒ an overview of analytical and numerical approaches to finding 

asymptotic solutions to the Korteweg-de Vries equation; 

‒ a review of analytical and numerical methods for finding solutions to 

differential equations containing the Dirac delta function. 

The second chapter is devoted to the solution of nonlinear singular, with a 

“small” parameter at the highest derivative, differential equations with variable 

discontinuous coefficients in the presence of a 𝛿-function on the right side through 

the development of a hybrid asymptotic approach. From the mechanical 

perspective, the 𝛿-Dirac function used as a tool for localised external perturbation. 

An algorithm of approximate analytical solution suitable for solving 

applied problems of mathematical physics involving the perturbation method, 

which allows to estimate the influence of the nonlinear component of the equation, 

and computer algebra is proposed. 

Particular attention is paid to the influence of the nature of the change in 

the coefficients of the basic singular differential equation on the effect of the 

presence of the 𝛿-function at the first derivative. An example based on the 

nonlinear differential equation of the Duffing type is considered. 

Numerical results of analytical solutions, depending on the magnitude of 

parameters of asymptotic development in two approximations are proposed. A 
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comparison of approximate analytical solution with direct numerical solution of 

the problem under study is provided. 

A graphical representation of the computational results of the basic 

equation of the problem by direct numerical integration and hybrid asymptotic 

method using the computer algebra software “Mathematica” is proposed. 

The third chapter offers an approximate analytical solution to the problem 

of the nonlinear dynamics of the hollow shells made of functionally graded 

materials with time-varying parameters taking into account the influence of the 

initial imperfections and a localised external periodic dynamic load. 

The chapter investigates an analytical algorithm using a hybrid asymptotic 

approach, based on perturbation methods and phase integrals, for computing the 

dynamic characteristics of geometrically nonlinear systems with variable 

parameters in the presence of the 𝛿-Dirac function. In particular, the solution of the 

singular linear differential equation with variable coefficients is considered within 

two main asymptotic approximations: in the time interval where the localised 

perturbation is observed (internal asymptotic), and in the regions outside the area 

of localisation of the perturbation (external asymptotic). 

The results of numerical calculations of the linear dynamics of the hollow 

shell under a specified type of localized perturbation are presented. 

The main analytical relationships have been obtained using computer 

algebra on the basis of the computer algebra software “Mathematica”. 

The graphical representations of the calculation results obtained using an 

approximate analytical approach and direct numerical integration of the problem 

equation are presented. 

The fourth chapter consider the analytical-numerical approach to solving 

the problem of nonlinear dynamics of an elastic system with time-varying 

parameters and a nonlinear damping function of the 𝑛𝑡ℎ degree. The influence of 

the external localised perturbation, which changes the system parameters both in 

time and space, is mathematically represented by the Dirac 𝛿-function. 
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The research describes the formulation and solution of the problem of 

dynamics of the elastic system with the nonlinear damping function. In the process 

of solving the problem, the perturbation method, the method of phase integrals, and 

the method of variation of an arbitrary constant are used. 

An example of solving the problem of dynamics of the elastic system 

undergoing free oscillations is presented, taking into account nonlinear damping 

and the localised perturbation. 

The analytical calculations obtained on the basis of the computer algebra 

software “Mathematica” are compared with the direct numerical method of 

analysis. Comparison of the graphs reveals similarities in the trajectories of 

analytical and direct numerical calculations. Some discrepancies are due to the use 

of the first approximation in the construction of the graphs. 

The influence of the localised external perturbation and the effect of 

nonlinear damping on the system are investigated. It is important to note that the 

selection of system parameters allows for the reduction of the effect of an external 

localised perturbation. 

Based on the conducted research, conclusions have been formulated for 

each chapter, and the results of the work have been summarised and overall 

conclusions for the dissertation have been made. 

Thus, the dissertation solves the actual problem of asymptotic solution of 

applied problems of mathematical physics described by singular differential 

equations with variable coefficients, taking into account the 𝛿-function. 

The scientific novelty of the obtained results includes the following: 

‒ for the first time, a further development of the hybrid asymptotic 

approach, the approximate analytical solution of the nonlinear 

differential equation with variable coefficients and the 𝛿-function on 

the right-hand side is obtained; 

‒ for the first time, the approximate analytical solution of the equation of 

nonlinear dynamics of functionally gradient materials of hollow shells 

with initial imperfections and external loading is obtained; 
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‒ for the first time, the analytical algorithm for calculating the dynamic 

characteristics of geometrically nonlinear systems with damping 

characterised by time-varying parameters using the Dirac delta function 

is proposed. 

The practical value of the results lies in the possibility of applying the 

developed analytical approach to solving applied problems of mathematical 

physics using a hybrid asymptotic approach. Such problems are often encountered 

in the domains of rocketry industry, mechanical engineering, radio electronics, 

aviation industry, construction, production of engines and industrial equipment, 

robotics, and beyond. 

Keywords: 𝛿-function, asymptotic-numerical algorithm, hybrid asymptotic 

approach by perturbation and WKB methods, time-varying parameters, localized 

perturbation, approximate analytical solution, nonlinear damping function, hollow 

shell, singular nonlinear differential equation, functional-gradient materials. 
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ВСТУП 

 

 

Актуальність теми дисертаційного дослідження. Актуальність теми 

дисертаційного дослідження пов’язана як із внутрішніми потребами 

прикладної математики, так і необхідністю створення аналітико-чисельних 

методів і алгоритмів у вирішенні сучасних проблем математичного 

моделювання фізичних процесів і явищ. Слід зазначити, що механічні і 

геометричні характеристики значної кількості конструкцій і систем нової 

техніки є функціями координат і часу, а також знаходяться під дією змінного 

за цими параметрами зовнішнього навантаження. Особлива увага 

приділяється останнім часом системам при наявності локалізованого 

збурення, що приводить до необхідності розв’язання нелінійних однорідних і 

неоднорідних диференціальних рівнянь зі змінними коефіцієнтами 

сингулярного типу та їх систем, що вміщують параметри при старшій похідній 

та при нелінійній складовій при наявності функції Дірака. Подібні рівняння, 

як правило, не можуть бути розв’язані точно. Тому на практиці 

використовуються різні наближені методи: при малих значеннях параметра − 

асимптотичні підходи, за межами малості − чисельні методи. При цьому, як 

правило, інтервал зміни параметра, на якому можливе застосовування 

асимптотичного або аналітико-чисельного методу, залишається 

невизначеним. Як показали дослідження останніх років, гібридні 

асимптотичні методи дозволяють будувати у ряді випадків досить точні 

наближені аналітичні розв’язки, незалежно від величини параметра при 

старшій похідній, і отримати надійний наближений аналітичний розв’язок 

прикладних задач на широкому інтервалі зміни параметра механіки з 

урахуванням залежності властивостей конструкції і зовнішнього 

навантаження за координатами та часом, крайових і початкових умов, а також 

для подальшого ефективного застосування чисельних підходів. 
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Останнім часом суттєва увага приділяється проблемам нелінійної 

динаміки конструкцій із змінними за часом параметрами, із застосуванням 

функціонально-градієнтних матеріалів (ФГМ) у оболонкових конструкціях 

нової техніки. 

Дисертаційна робота присвячена використанню гібридного 

асимптотичного підходу (на базі методів збурення і фазних інтегралів) до 

розв’язання задач динаміки систем з дискретно-континуальними 

характеристиками та змінними за часом коефіцієнтами у нелінійній 

постановці. 

Результати аналізу дослідження і характеру зміни параметрів різних 

об’єктів вказують, що даний підхід із застосуванням комп’ютерної алгебри 

забезпечує достатню ефективність у порівнянні із точним розв’язком, коли він 

існує, та належну відповідність відомим наближеним аналітичним та прямим 

чисельним розв’язкам. 

Зв’язок роботи з науковими програмами, планами, темами. 

Проведені у дисертаційній роботі дослідження виконані в межах наукових 

досліджень, що виконуються у Запорізькому національному університеті, при 

виконанні науково-дослідної теми: «Чисельні та аналітичні методи 

розв’язання диференціальних та інтегральних рівнянь задач механіки 

деформівного твердого тіла» (номер державної реєстрації 0121U114696). 

Мета і задачі дослідження. Метою роботи є застосування сучасних 

наближених аналітичних, зокрема асимптотичних, підходів до розв’язку 

актуальних проблем прикладної математики, розробка нових наближених 

аналітичних розв’язків ряду задач нелінійної динаміки, у тому числі 

конструкцій із суттєвою нелінійністю та нелінійною функцією демпфування, 

а також поведінки пологих оболонок із функціонально-градієнтних матеріалів 

зі змінною у часі товщиною, початковими недосконалостями і 

характеристиками, залежними від часу при наявності локалізованого 

збурення. 

Задачі, які необхідно вирішити для досягнення поставленої мети: 
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‒ запропонувати гібридний асимптотичний підхід розв’язання задачі 

динаміки конструкцій із суттєвою нелінійністю при наявності функції Дірака; 

‒ створити наближений аналітичний підхід розв’язання задачі 

нелінійної динаміки пологої оболонки із ФГМ з товщиною, залежною від часу 

при локалізованому збуренні; 

‒ запропонувати наближений аналітичний підхід розв’язання задачі 

нелінійної динаміки конструкції із нелінійною функцією демпфування при 

наявності дельта-функції; 

‒ порівняти наближені аналітичні розв’язки із результатами прямого 

чисельного підходу. 

Об’єкт дослідження – нелінійні динамічні процеси у системах із 

змінними коефіцієнтами при наявності локалізованого збурення. 

Предмет дослідження – наближений аналітичний підхід розв’язання 

задач нелінійної динаміки, які зводяться до сингулярних нелінійних 

диференціальних рівнянь із змінними коефіцієнтами при наявності 𝛿-функції 

Дірака. 

Методи дослідження. Запропоновані у дисертаційній роботі 

наближені аналітичні розв’язки базуються на використанні гібридних 

асимптотичних підходів, зокрема методів збурення, фазних інтегралів (метод 

ВКБ) для отримання наближених аналітичних розв’язків. Результати здобутих 

наближених аналітичних розв’язків порівнюються із даними прямого 

чисельного інтегрування основних рівнянь із застосуванням чисельних 

методів. 

Наукова новизна одержаних результатів. До наукової новизни 

роботи відноситься: використання гібридного асимптотичного підходу для 

отримання наближеного аналітичного розв’язання нелінійного 

диференціального рівняння зі змінними коефіцієнтами та 𝛿-функцією у правій 

частині; отримання наближеного аналітичного розв’язку рівняння нелінійної 

динаміки функціонально-градієнтних матеріалів пологих оболонок з 

початковими недосконалостями та зовнішнім навантаженням; розробка 
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наближеного аналітичного підходу обчислення динамічних властивостей 

геометрично нелінійних систем зі змінними параметрами та нелінійною 

функцією демпфування з врахуванням локалізованого збурення. 

Практичне значення одержаних результатів. Практичне значення 

одержаних результатів полягає в можливості використання запропонованого 

підходу та результатів дослідження для вирішення прикладних проблем 

математичної фізики із залученням гібридного асимптотичного підходу при 

наявності локалізованих ефектів, що виникають у ракетній індустрії, 

машинобудуванні, авіаційній промисловості, радіоелектроніці, робототехніці, 

виробництві двигунів та промислового устаткування, а також в багатьох інших 

галузях. 

Особистий внесок. Основні наукові результати дисертації отримані 

автором самостійно. У роботах, опублікованих у співавторстві, особистий 

внесок здобувача полягає у наступному: 

у [89] – застосування алгоритму гібридного асимптотичного підходу 

до розв’язку диференціальних рівнянь із змінними коефіцієнтами і нелінійною 

першою похідною, результати чисельного аналізу; 

у [10] – постановка, основні співвідношення і застосування 

асимптотичного підходу до аналізу впливу локалізованого збурення у задачі 

коливань пологих оболонок із функціонально-градієнтних матеріалів; 

у [9] – алгоритм і результати дослідження наближеного аналітичного 

розв’язку диференціальних рівнянь другого порядку із змінними 

коефіцієнтами при наявності 𝛿-функції.  

Апробація результатів досліджень. Основні положення та проміжні 

результати дисертаційної роботи було представлено та обговорено на 

наступних всеукраїнських і міжнародних конференціях: 

– Дванадцята Всеукраїнська, дев’ятнадцята регіональна наукова 

конференція молодих дослідників «Актуальні проблеми математики та 

інформатики» (м. Запоріжжя, 2021 р.);  
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– Тринадцята Всеукраїнська, дев’ятнадцята регіональна наукова 

конференція молодих дослідників «Актуальні проблеми математики та 

інформатики» (м. Запоріжжя, 2022 р.);  

– Чотирнадцята Всеукраїнська, Двадцять перша регіональна 

наукова конференція молодих дослідників «Актуальні проблеми математики 

та інформатики» (м. Запоріжжя, 2023 р.);  

– Second International Scientific and Practical Conference 

«Development and design of modern materials and products» (м. Дніпро, 2023 р.).  

Публікації. Основні наукові результати дисертації опубліковано в 

наступних семи роботах: три статті – у наукових фахових виданнях України 

[9, 10, 89]; одна – матеріали закордонної міжнародної конференції [122] та три 

– тези доповідей, опублікованих у збірниках праць вітчизняних наукових 

конференцій [17, 20, 21]. 

Структура та обсяг роботи. Дисертаційне дослідження складається з 

анотації, вступу, чотирьох розділів, висновків, списку використаних джерел і 

додатків. Загальна кількість сторінок - 125. Включає 12 рисунків, 

148 найменувань використаних джерел (20 сторінок) і чотири додатки. 
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РОЗДІЛ 1 

АНАЛІТИЧНИЙ ОГЛЯД СУЧАСНОГО СТАНУ АНАЛІТИКО-

ЧИСЛОВИХ ПІДХОДІВ ДО РОЗВ’ЯЗКУ ДИФЕРЕНЦІАЛЬНИХ 

РІВНЯНЬ ЗІ ЗМІННИМИ І РОЗРИВНИМИ КОЕФІЦІЄНТАМИ 

 

 

Застосування асимптотичних методів дослідження, особливо 

гібридних аналітико-чисельних, які тісно пов’язані із фізичною суттю 

досліджуваної задачі, дають змогу отримувати наближені аналітичні розв’язки 

диференціальних рівнянь та їхніх систем, як лінійних, так і нелінійних, у 

досить широкому інтервалі параметрів досліджуваних явищ і систем. 

Необхідно зазначити, що суттєвий внесок у сферу досліджень та розв’язання 

диференціальних рівнянь, особливо із змінними коефіцієнтами на базі 

асимптотичних підходів і чисельних підходів, зробили, зокрема, такі вчені, як 

Андріанов І. В. [38-40], Міхлін Ю. В. [27, 126, 133], Данішевський В. В. [40, 

64], Реуцький С. Ю. [42, 121], Крутій Ю. С. [15], Грищак В. З. [1, 4‒8, 86‒88], 

Клюс І. С. [14], Самойленко Ю. І. [22‒26, 123], Д’яченко Н. М. [7, 135], 

Гребенюк С. М. [3, 65, 138], Гоменюк С. І. [3], Самойленко В. Г. [22‒24, 123], 

Шкіль М. І. [29, 30], Луговий П. З. [105] та інші вітчизняні та закордонні 

дослідники, посилання на результати досліджень яких робиться у наступних 

розділах. 

 

1.1. Аналітичні та чисельні підходи до розв’язання 

диференціальних рівнянь зі змінними коефіцієнтами 

 

Що стосується неоднорідних нелінійних диференціальних рівнянь з 

частинними похідними зі змінними коефіцієнтами та вхідними параметрами 

мають розв’язання, наприклад у роботі [32], в якій застосовано концепцію 

«часткових розв’язків» і серію «модифікованих розкладів». 
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Класична коректність нелокальної двоточкової задачі для нескінченних 

систем лінійних диференціальних рівнянь зі змінними коефіцієнтами 

досліджується у [2]. 

В огляді [70] наведено ключові етапи розвитку методів дослідження 

крайової задачі. Розглянуті розв’язки розподіляються на три основні категорії: 

прямі задачі, напівобернені задачі та обернені задачі. Додатково, представлено 

нові аналітичні рішення, отримані в результаті розв’язання оберненої задачі 

для коливальних процесів. 

Достатні критерії стійкості розв’язків лінійних диференціальних 

рівнянь другого порядку зі змінними коефіцієнтами та запізненням 

сформульовано у роботі [144]. 

Властивості розв’язків нейтральних диференціальних рівнянь є 

предметом дослідження [147, 148], де встановлено достатні умови для того, 

щоб розв’язки нейтральних диференціальних рівнянь зі змінними 

коефіцієнтами та запізненнями мали коливальний характер. 

У дослідженні [104] пропонується простий та дієвий спосіб 

наближеного розв’язування лінійних звичайних диференціальних рівнянь, з 

акцентом на лінійні звичайні диференціальні рівняння другого порядку зі 

змінними коефіцієнтами. Звичайне диференціальне рівняння трансформується 

в інтегральне рівняння Вольтерра або Фредгольма, вибір якого залежить від 

того, чи задано початкові або граничні умови. Застосовуючи розклад Тейлора, 

отримане інтегральне рівняння перетворюється у систему лінійних рівнянь 

відносно невідомих та їхніх похідних двома різними шляхами, що базуються 

на диференціальному та інтегральному підходах. Запропонований метод 

реалізується за допомогою символьних обчислень. 

Спосіб отримання аналітичних розв’язків для певного типу 

диференціальних рівнянь другого порядку, що містять змінні коефіцієнти 

запропоновано у роботі [141]. Розв’язок будується на основі перетворень та 

численних ітераційних інтегрувань. Цей підхід слугує певною альтернативою 
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до, наприклад, класичного методу степеневих рядів, за допомогою якого 

можна розв’язувати досліджений клас рівнянь. 

У роботі [51] продемонстровано квадратурно зміщений тау-метод 

Лежандра для дробових диференціальних рівнянь із змінними коефіцієнтами, 

що виражені поліномами. Цей метод спрощує процес розв’язання завдяки 

чіткому визначенню матричних компонентів дискретних операторів. 

Результати, отримані з його допомогою, вказують на його ефективність у 

вирішенні задачі, оскільки для досягнення адекватних результатів необхідна 

невелика кількість зміщених поліномів Лежандра. 

Стаття [33] презентує метод дробових підрівнянь, призначений для 

розв’язання дробових диференціальних рівнянь зі змінними коефіцієнтами. 

Застосування цього методу було успішним у дослідженні рівнянь Гарднера зі 

змінними коефіцієнтами. Результатом цього стало отримання різних точних 

розв’язків, серед яких були гіперболічні, тригонометричні та раціональні. 

Метод диференційного перетворення, наведений у дослідженні [118], 

виявив високу ефективність при розв’язанні диференціальних рівнянь у 

часткових похідних зі змінними коефіцієнтами. Розв’язок, отриманий за 

допомогою цього методу, виражається у вигляді нескінченного степеневого 

ряду, що відповідає початковій умові, і здатний представити точні розв’язки в 

компактній формі. Таким чином, метод демонструє зменшення обсягу 

обчислень та може бути застосований для розв’язання великої кількості 

диференціальних рівнянь у часткових похідних зі змінними коефіцієнтами. 

У статті [57] представлено набір узагальнених функцій Лежандра 

дробового порядку. Було отримано операційні матриці дробового 

диференціювання, а також матриці добутку для узагальнених функцій 

Лежандра дробового порядку. Матриці, разом з методом Тау, 

використовуються для спрощення та ефективного обчислення чисельного 

розв’язку дробових диференціальних рівнянь зі змінними коефіцієнтами. У 

порівнянні з іншими чисельними методами, запронований метод дозволяє з 

високою точністю відтворити властивості дробового числення. 
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Мета роботи [145] полягала у створенні дієвого та точного способу 

розв’язання дробових диференціальних рівнянь зі змінними коефіцієнтами та 

в аналізі характеристик збіжності вейвлетного базису Хаара. Створено 

вейвлетну матрицю Хаара для інтегрування дробового порядку та виконано 

ефективну дискретизацію змінних коефіцієнтів. Вихідне рівняння 

перетворено на систему одночасних лінійних алгебраїчних рівнянь, де 

вейвлетна матриця Хаара, завдяки своїй розрідженій структурі та 

ортогональності, здатна надавати добре зіставлені чисельні розв’язки зі 

значним скороченням обчислювальної складності. 

У роботі [106] запропоновано ефективні алгоритми спектрального 

методу Гальоркіна, котрі є удосконаленнями спектральних алгоритмів 

Гальоркіна для класичних еліптичних диференціальних рівнянь у часткових 

похідних. Їх було спроєктовано для розв’язання багатовимірних дробових 

еліптичних рівнянь зі змінними коефіцієнтами. 

У доповіді [28] представлено стислий історичний екскурс у сферу 

дослідження методик конструювання асимптотичних розв’язків сингулярно 

збурених диференціальних рівнянь другого порядку, які містять нерегулярні 

особливі точки. Розглянуто випадки, коли характеристичне рівняння 

демонструє кратні корені, відповідні одному або декільком елементарним 

множникам. 

У праці [66] запропоновано оригінальний алгоритм для розв’язання 

диференціальних рівнянь зі змінними коефіцієнтами з використанням 

модифікованого варіанта спеціальних перетворень. Алгоритм довів високу 

ефективність у знаходженні розв’язків широкого спектра звичайних 

диференціальних рівнянь із змінними коефіцієнтами. 

Наближені розв’язки складних диференціальних рівнянь вищих 

порядків зі змінними коефіцієнтами в прямокутній області, використовуючи 

поліноми Ейлера, представлено у роботі [52], де створено матричну форму 

полінома Ейлера та його похідних, а диференціальне рівняння, що 

розглядається, було трансформовано в матричне рівняння з невідомими 
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коефіцієнтами Ейлера, яке еквівалентне системі лінійних алгебраїчних 

рівнянь, що вирішується шляхом підстановки точок колокації у матричні 

форми для знаходження невідомих коефіцієнтів. 

У доповіді [12] проаналізовано і проілюстровано конкретні способи 

одержання наближених аналітичних рішень лінійних диференціальних 

рівнянь, використовуючи асимптотичні методи малого параметра. 

У дослідженні [107] застосовано нову методику для створення 

модифікованого методу варіаційних ітерацій Лапласа для аналізу 

параболічних диференціальних рівнянь з частковими похідними четвертого 

порядку, де коефіцієнти є змінними. Множники Лагранжа, які 

використовуються у цьому методі, є значно простішими, аніж в інших наявних 

підходах, зокрема таких, як метод адоміанської декомпозиції, модифікований 

метод декомпозиції, метод варіаційних ітерацій та модифікований метод 

варіаційних ітерацій. Тут відсутня необхідність використання інтегралів або 

теорем згортки для визначення множників Лагранжа в рекурентному 

співвідношенні. Також не потрібні операції дискретизації, лінеаризації або 

застосування припущень щодо малих параметрів, які могли б спотворити 

фізичну природу задачі. 

Застосовуючи новий підхід, наведений у роботі [101], практично 

розв’язані дробові диференціальні рівняння із змінними коефіцієнтами. 

Впроваджено поєднання різних типів дробових похідних з запропонованим 

методом. Проведено оцінку ефективності методу, використовуючи дробові 

похідні Капуто, Рімана-Ліувілля, Капуто-Фабріціо та Джумарі. Відмінності у 

результатах зумовлені різними ядрами, що використовуються в кожному типі 

дробової похідної. Практична корисність та ефективність запропонованого 

методу визначається вибором конкретного типу дробової похідної. 

Розроблений метод, заснований на різних графічних структурах, може бути 

успішно використаний для розв’язання дробових інтегро-диференціальних 

рівнянь із запізненням, а також дробових диференціальних рівнянь із 

частковими похідними. 
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Стаття [130] висвітлює обчислювальний підхід для наближеного 

вирішення нелінійних дробових диференціальних рівнянь Ріккаті зі змінними 

коефіцієнтами, з довільним ступенем. 

У роботі [116] подано спосіб представлення розв’язку системи 

диференціальних рівнянь із запізненням, що включає кратні сталі затримки, а 

також коефіцієнти, які є сталими чи залежними від часу. Отримані висновки 

використано для системи диференціальних рівнянь із запізненням вищих 

порядків, що дало змогу знайти представлення їх розв’язків. Процес 

передбачає перетворення початкової системи на більшу систему 

диференціальних рівнянь першого порядку із затримкою. Зручним 

інструментом для спрощення запису став добуток матриць Кронекера. Отже, 

метод застосовний до широкого спектру диференціальних рівнянь із 

затримками вищих порядків, але іноді може знадобитися додаткова 

обчислювальна робота для спрощення отриманих рівнянь. 

У статті [13] проаналізовано використання аналітичного методу 

прямого інтегрування для розрахунку будівельних конструкцій, 

представлених круглими та кільцевими пластинами і плитами, котрі 

спираються на неперервну змінну пружну основу. Застосування 

запропонованого підходу дало можливість отримати розв’язки для великої 

кількості задач, де математичне представлення виглядає як диференціальне 

рівняння зі змінними коефіцієнтами або система таких рівнянь, а також 

одночасно оцінити можливості і точність методу скінченних елементів при 

розрахунку розглянутих проблем. 

На дослідженні коливальних властивостей розв’язків диференціальних 

рівнянь четвертого порядку, коефіцієнти яких є змінними, зосереджено увагу 

у [50], де застосовані наступні підходи: метод порівняння, метод Ріккаті, а 

також метод інтегрального середнього. 

У роботі [120] виведено формули подання розв’язків дробових 

диференціальних рівнянь із змінними коефіцієнтами, застосовуючи дробову 

похідну Хільфера щодо іншої функції. Розв’язок продемонстровано збіжними 
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нескінченними рядами з композицією дробових інтегральних операторів 

Рімана‒Ліувіля. Також, для розв’язання дробових диференціальних рівнянь 

типу Хільфера зі змінним коефіцієнтом було застосовано теорему Банаха про 

нерухому точку. Розв’язок подано як дробовий інтеграл Рімана‒Ліувіля від 

багатовимірної функції Міттаг‒Леффлера при наявності постійних 

коефіцієнтів. 

Книга [40] фокусується на хвильових явищах, лінійних та нелінійних, 

що проявляються у складних мікроструктурованих твердих тілах. Вивчаючи 

внутрішню будову цих матеріалів за допомогою таких методів, як 

гомогенізація та асимптотичні підходи, встановлюються загальні властивості. 

Запропонована вдосконалена методологія є відмінною альтернативою 

традиційним числовим методам. Детальні приклади охоплюють теми, що 

стосуються дослідження динаміки, як впорядкованої, так і невпорядкованої, за 

допомогою принципів континуалізації та дискретизації, дослідження пружних 

хвиль у неоднорідних матеріалах, а також проблеми концентрації вібрацій 

лінійних та нелінійних ґратчастих структур в одному вимірі. 

Дослідження [77] зосереджується на лінійних звичайних 

диференціальних рівняннях, що містять дробові похідні. У кожному 

конкретному випадку, розв’язання представлено як явно збіжний 

нескінченний ряд, котрий включає в себе композицію дробових інтегралів. 

Доводиться єдиність ряду у відповідному функціональному просторі за 

допомогою фіксованих банахових функцій. У статті [76] розглянуто дробові 

диференціальні рівняння зі змінними коефіцієнтами. Застосовуючи теорему 

Банаха про нерухому точку, встановлено існування та єдиність розв’язків 

рівнянь і використано метод послідовних наближень для отримання явного 

вигляду розв’язку, який подано рівномірно збіжним нескінченним рядом. Це 

один з перших випадків, коли таке загальне диференціальне рівняння з 

частинними похідними вдається розв’язати застосовуючи конструктивні 

аналітичні методи, які забезпечують отримання явної функції розв’язку. 
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У праці [113] презентовано підхід для наближеного вирішення лінійних 

та нелінійних дробових диференціальних рівнянь різного порядку. У його 

основі ‒ модифікація методу з ортогонально зсунутими поліномами Лежандра. 

Методика передбачає перетворення дробового диференціального рівняння з 

багатьма порядками на систему диференціальних рівнянь з частинними 

похідними, а потім розв’язання цієї системи за допомогою методу операційних 

матриць. Ефективність методу підтверджено шляхом визначення абсолютної 

похибки, яка зменшується при збільшенні масштабу. Перевагою методу є 

відсутність необхідності у проведенні лінеаризації, дискретизації та збурень. 

Представлений підхід підходить для розв’язання лінійних та нелінійних задач 

дробового порядку зі сталими та змінними коефіцієнтами. 

Дослідження [131] присвячене складній проблемі розв’язування 

нелінійних звичайних диференціальних рівнянь зі змінними коефіцієнтами, 

представляє концепцію пружних перетворень як новий підхід. Було 

запропоновано та розроблено методику пружних перетворень, 

цілеспрямовано для розв’язання диференціальних рівнянь зі змінними 

коефіцієнтами. Застосовуючи цей підхід, досягається успішне перетворення 

груп неоднорідних нелінійних рівнянь першого порядку, а також певних 

нелінійних звичайних диференціальних рівнянь третього порядку, при цьому 

обидва типи містять змінні коефіцієнти, у специфічні однорідні лінійні 

рівняння. Комбінуючи властивості пружності з загальними розв’язками цих 

спеціалізованих рівнянь, виведено комплексні розв’язки для вихідних 

диференціальних рівнянь. 

 

1.2. Методи розв’язання диференціальних рівнянь з розривними 

коефіцієнтами 

 

Динаміка ребристої пластини і оболонки описується [38] системою 

диференціальних рівнянь в частинних похідних з розривними коефіцієнтами, 

коли враховується дискретність ребер. У разі низьких частот можна 
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використовувати метод гомогенізації. На першому етапі жорсткість і 

щільність бічних ребер розподіляються вздовж пластини (оболонки), а сама 

пластина (оболонка) замінюється на гладку ортотропну пластину зі зниженою 

жорсткістю і щільністю. Процедури гомогенізації та збурення дозволяють 

вирішити проблему вібрації армуючої пластини. Нижня частина спектра 

отримується методом гомогенізації, а верхня частина ‒ методом збурення. 

Використаний підхід дозволяє визначити графік частот і форм сигналів, які 

повинні бути знайдені, з будь-якою необхідною точністю і отримати 

аналітичну формулу в замкненому вигляді для всього спектру власних частот 

пластини або оболонки. 

Узагальнено стохастичні диференціальні рівняння на випадок 

розривних коефіцієнтів (ступінчастих функцій) і розроблено методи [67] 

випадкового блукання для чисельного інтегрування цих рівнянь. Нові методи 

засновані на рівнянні дисперсії-адвекції навіть у складних умовах. Ці методи 

зберігають багато обчислювальних переваг, включаючи можливість 

ефективного моделювання розподілу маси розчиненої речовини та часу, 

одночасно усуваючи такі помилки, як чисельна дисперсія. 

У статті [140] описується метод розривів зсуву, що застосовується до 

деформованих пластин зсуву з тріщинами, що піддаються статичним і 

динамічним навантаженням. Фундаментальне рішення дислокацій 

отримується за допомогою перетворення Фур’є та перетворення Лапласа. 

Граничні інтегральні рівняння представлені з точки зору обертання/зсуву на 

поверхні тріщини. 

Стаття [61] вводить поняття розв’язку для розривних динамічних 

систем. Розглядаються доступні інструменти негладкого аналізу для вивчення 

градієнтної інформації функцій Ляпунова та представлено інструменти 

негладкої стійкості для характеристики асимптотичної поведінки розв’язків. 

Наприклад, розв’язки Каратеодорі використовуються для залежних від часу 

векторних полів, таких як динамічні системи з імпульсами та системи 

управління з розривними входами розімкнутого контуру. Розв’язки Філіпова 
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використовуються для вирішення проблем з електричними колами, що 

пов’язані з перемикачами, релейним управлінням, тертям і ковзанням. 

Концепція 𝜋-рішення системи управління має фізичну інтерпретацію 

ітеративної оцінки вхідних даних в поточному стані і залишається незмінною 

протягом деякого часу, поки розвивається замкнута динамічна система. Така 

концепція розв’язку відіграє важливу роль у стабілізації асимптотично 

керованих систем. 

У статті [132] розглядається питання перевірки і розрахунку 

оптимального управління системою, динаміка якої регулюється 

диференціальною системою з розривною правою частиною. Метою 

дослідження є оптимальне управління механічними системами з кулонівським 

тертям, яке демонструє розривну праву частину. Показано, що похідна від 

результатів моделювання призводить до градієнта з похибкою розміру 

незалежно від розміру, навіть якщо рішення перетинається і не залишається в 

розриві. Розривна права частина для диференціальних рівнянь або включень 

апроксимується гладкою правою частиною. Для цих наближень згладжування 

показано, коли початкова і кінцева точки траєкторії не знаходяться на 

розривах, і що метод Ейлера використовується, коли розмір кроку «досить 

малий» порівняно з параметрами згладжування. 

У роботі [44] досліджується гіперболічне рівняння з частинними 

похідними з умовами передачі потоку на межі між підобластями, коефіцієнти 

яких є розривними. Щоб пояснити неоднорідності, що виникають на межі 

розриву, була адаптована спеціальна схема з обмеженими покращеннями 

більш високого порядку. Метод застосовано до біологічної моделі, 

орієнтованої на складну клітинну динаміку, яка продемонструвала всі 

потенційні можливості схеми. 

Темою дослідження [92] є звичайне диференціальне рівняння з 

розривною правою частиною, де розрив векторного поля виникає на гладких 

поверхнях фазового простору. Основна увага приділяється вивченню рішень, 

близьких до перетину двох розривних поверхонь. Прихована динаміка описує 
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плавний перехід від вхідних до вихідних напрямків розв’язку. Для безлічі 

рішень розривної задачі, після введення перетину двох дискретних поверхонь, 

можна передбачити, яке рішення буде апроксимовано. 

Обговорюється [143] новий розширений вбудований скінчений 

елемент з безперервними стрибками зміщення для моделювання 

локалізованого збою в твердих тілах. На основі уніфікованої багатошарової 

кінематики сильних розривів стандартні скінченні елементи великого 

масштабу доповнюються кінематикою малого масштабу, яка включає в себе 

неоднорідні режими розриву. Але умова безперервності тяги через розрив 

застосовується в статично оптимальній формі в якості дрібномасштабної 

статики. Отже, режим переривчастості задовольняє умову тягової 

безперервності. Отримано більш загальний відносний режим розтягування, 

який призводить до руйнування поля деформації/напруги без обмеження 

коефіцієнта Пуассона. Запропонована модель детально описує двовимірні 

чотирикутні елементи. Стрибок зсуву в вузлі розриву вважається глобальною 

змінною, яка вибирається в якості параметра розширення і використовується 

спільно з суміжними елементами. Отримана модель не тільки повністю 

згладжена, але й автоматично забезпечує глобальну безперервність стрибка 

зсуву. Ще одна перевага полягає в тому, що можна легко уникнути числової 

нестабільності. Крім того, можна легко застосувати зникаючий стрибок зсуву 

на межі розриву, оскільки можна уникнути звичайних істотних граничних 

умов. Разом з критерієм відмов, пов’язаним з середнім напруженням елемента 

та орієнтацією поширення, заснованою на спрощеному нелокальному 

напруженні, застосовується локальний алгоритм відстеження тріщин, щоб 

гарантувати глобальну безперервність шляху розривів. 

Розглянуто [56] математичну модель механіки твердого тіла для 

згинання пучка диференціальних рівнянь. Дана задача вирішується з 

використанням узагальнених функцій, серед яких відома дельта-функція 

Дірака. Домінуючим диференціальним рівнянням є пучок Ейлера-Бернуллі з 

розривами стрибків для переміщення і обертання. В просторі узагальнених 
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функцій отримані основні диференціальні рівняння балок з розривами 

стрибків по нахилу, прогину, жорсткості на вигин і жорсткості на зсув. Один 

з операторів керуючих диференціальних рівнянь, що представляє один і той 

же елемент в пучку Ейлера-Бернуллі, був змінений таким чином, що для обох 

рівнянь дельта-функція Дірака і її перша похідна за розподілом 

відображаються в новому силовому члені. 

У методі Гальоркіна без елементів важко впоратися з істотними 

граничними умовами та граничними умовами розривних середовищ через 

характеристики наближених функцій. Візуальний принцип використовується 

для однакового розгляду граничних умов розривних середовищ. Розривні 

границі та основні граничні умови застосовуються до цього методу більш 

простим способом. Такий підхід спрощує розробку складних границь. У статті 

[146] метод застосовується до моделей неоднорідних середовищ. 

Розроблено [43] параметричний однорідний чисельний метод для 

двопараметричних сингулярно збурених параболічних рівнянь у частинних 

похідних з розривними коефіцієнтами конвекції та джерела. Наявність 

параметра збурення та розрив у коефіцієнті конвекції і коефіцієнті джерела 

призводять до появи примежових і внутрішніх шарів у розв’язку. Метод 

забезпечує рівномірну збіжність по відношенню до максимальної норми, яка 

має майже перший порядок в просторі і часі, незалежно від співвідношення 

між параметрами конвекції і дифузії. 

У статті [72] досліджено існування та унікальність розв’язків 

імпульсного дробового інтегро-диференціального рівняння змішаного типу зі 

сталим коефіцієнтом та граничною умовою. 

Проаналізовано [36] динаміку нелінійних гладких і розривних 

осциляторів. Розглянута конструкція включає в себе рухому масу-транслятор, 

з’єднану з двома струнами. Рух маси є коливальним і перпендикулярним до 

положення струн. Зазвичай на струну діє сила попереднього натягу. Через 

геометричні та фізичні властивості системи сили пружності струн нелінійні. 

Модель руху маси являє собою сильне нелінійне диференціальне рівняння 



34 

другого порядку. Нелінійність має степеневий тип, а порядок нелінійності 

дорівнює будь-якому додатному дійсному числу. На основі точного рішення 

розроблена процедура наближеного розв’язання нелінійних рівнянь руху. 

Зроблено висновок, що зміна сили натягу струни впливає на швидкість 

загасання амплітуди в системі. 

Проаналізовано [85] довгострокові характеристики схем Ейлера, що 

застосовуються до стохастичних диференціальних рівнянь з постійними 

коефіцієнтами дифузії, та проведено інтенсивні чисельні випробування їх 

збіжності. Зосередившись на швидкості збіжності, проаналізовано, як вона 

залежить від характеристик коефіцієнта та початкового значення. Це також 

дає деяку теоретичну інтерпретацію явищ, які відбуваються в цьому випадку. 

Запропоновано [103] новий алгоритм для моделювання дифузійних 

процесів в умовах розривної конвекції та дифузії. Алгоритм заснований на 

знанні аналітичної формули розчинника дифузійного процесу, а не на 

аналітичній формулі густини. Для дифузійних процесів доступні приблизні 

формули для розчинників. Показано, що наближена густина частинок, 

отримана алгоритмом, добре відтворює характеристики справжньої густини 

(неоднорідність, розриви,…). 

Отримано рівняння коливань сферичної багатошарової оболонки при 

нестаціонарному навантаженні [105]. Для аналізу елементів пружних 

конструкцій використовується модель теорії оболонок і стрижнів. Чисельний 

метод визначення отриманих рівнянь заснований на застосуванні методу 

інтегральної інтерполяції для побудови скінчено-різницевої схеми рівнянь з 

розривними коефіцієнтами. Завдання про динамічну поведінку сферичних 

багатошарових оболонок при нестійкому навантаженні вирішується з 

урахуванням дискретності ребер. 

Розв’язано [73] квадратичні еліптичні рівняння з розривними 

коефіцієнтами, а масштабований метод граничних скінченних елементів 

розширено для роботи зі слабкими розривами. Запропонований метод 

характеризується тим, що вимагає лише дискретизації межі. Внутрішні межі 
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неявно представлені методом набору рівнів, і для ідентифікації різних 

областей використовується набір нульових рівнів. 

Розглядається [62] метод обчислення для класу сингулярно збурених 

квадратичних параболічних диференціальних рівнянь з розривними 

коефіцієнтами. Сформульований метод включає неявний метод Ейлера та 

кубічно-сплайновий метод для часового та просторового вимірів. 

Метою роботи [31] є отримання чисельного наближення для вирішення 

двопараметричних систем диференціальних рівнянь конвекції-дифузії-реакції 

з сингулярними збуреннями та розривними коефіцієнтами. Ця розривність, 

разом з невеликим значенням параметра збурення, призводить до появи 

внутрішніх шарів в розв’язку. Щоб отримати необхідну точність визначення 

точок, розглядаються метод кінцевих різниць для просторових змінних і 

неявна схема Ейлера для часових змінних. 

Пропонується [127] гібридний скінчено-різницевий метод для 

розв’язання сингулярно збурених параболічних функціонально-

диференціальних рівнянь з розривними коефіцієнтами. Представлена гібридна 

схема являє собою комбінацію центральної різницевої схеми і схеми з 

середньою точкою проти вітру на спеціально створеній сітці. Дискретизовано 

тимчасову змінну, використовуючи неявний метод скінченних різниць. 

Рішення цієї задачі показує поведінку точки повороту при розриві. Метод 

збігається рівномірно, незалежно від параметрів збурення. 

У статті [54] автори описали всі напівгрупи, які є рішенням звичайного 

розривного диференціального рівняння. Отримано два наближені результати. 

Кожна напівгрупа може бути отримана як точкова межа потоку, що 

генерується послідовністю звичайних диференціальних рівнянь 𝑥̇ =  𝑓𝑛(𝑥) з 

гладкою правою частиною, або як границя послідовності дифузійних процесів 

з коефіцієнтами дифузії, що наближаються до нуля. 

Динаміка системи, утвореної двома маятниками, які взаємодіють між 

собою через пружний зв’язок і перебувають під впливом магнітного поля 

аналізується у роботі [27], де дається аналіз нелінійного режиму нормальних 



36 

зв’язаних коливань у системі. Враховуючи як малі, так і великі початкові кути 

відхилення маятників, вивчається вплив зміни параметрів системи на режим. 

Застосовуються аналітичні методи та чисельний підхід для дослідження 

характеру коливань. Аналітично визначаються початкові умови для 

встановлення режиму. Стійкість вібраційного режиму аналізується за 

допомогою чисельно-аналітичного методу та оцінюється за допомогою 

ортогональних відхилень. 

Книга [39] сфокусована на актуальних асимптотичних методах (АМ), 

які сьогодні незамінні у численних галузях, включаючи інженерію, прикладні 

науки, фізику та прикладну математику. Автори концентруються на 

роз’ясненні ключових концепцій і процедур. Окрім представлення базових 

АМ, автори наголошують на їхній внутрішній узгодженості та тісному 

взаємозв’язку. 

Результатом дослідження у [93] є сингулярно збурені параболічні 

рівняння. 

Розглядається [117] можливість квантового моделювання 

диференціальних рівнянь з частинними похідними з фізичними граничними 

умовами. 

Пропонується [119] розв’язання задач Рімана, яке враховує розривність 

швидкості акустичних хвиль. Невідповідність середньої роздільної здатності 

‒ це коли швидкість звуку має від’ємне ліве значення та додатне праве 

значення. У цьому випадку з’являється стаціонарний стан і доводиться 

формула сталого стану, доказ якої базується на узагальненій теорії 

функціональної алгебри. 

 

1.3. Застосування розривного методу Гальоркіна для розв’язання 

різних видів диференціальних рівнянь 

 

Стаття [60] ‒ є нарисом про розривні методи Гальоркіна. Оскільки 

метод використовує повністю розривне наближення, він генерує матрицю 
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маси, яка є блочно-діагональною. Це робить метод дуже паралельним при 

застосуванні до гіперболічних задач. Метод ідеально підходить для 

використання з адаптивними алгоритмами. Крім того, щодо нелінійних 

гіперболічних задач розривний метод Гальоркіна може знаходити дуже 

складні рішення. Стаття зосереджена на ідеях, що лежать в основі розробки 

цих методів, і на огляді механізмів, які можуть успішно вирішувати 

різноманітні проблеми. 

У дослідженні [96] вивчається теорія, загальна і систематична, 

формулювання розривного методу Гальоркіна. На його основі був 

представлений новий метод колокації загального застосування, 

TH- колокацію. Для широкого класу симетричних і додатних безперервних 

систем TH-колокація створює симетричні і додатні матриці. Це показує 

можливості ефективного застосування колокації, методів декомпозиції області 

і паралельних обчислень в таких системах. Метод застосовується для розробки 

ефективного методу обробки еліптичних рівнянь другого порядку. 

У роботі [35] представлено новий обчислювальний підхід, який 

об’єднує переваги розривних методів Гальоркіна з структурою даних, 

притаманною неперервним методам Гальоркіна. Зокрема, для відображення 

неперервного простору скінченних елементів у заданий розривний простір 

використовуються локалізовані, характерні для кожного елемента, задачі. 

Після цього застосовується розривний метод Гальоркіна. 

Для вирішення звичайних диференціальних рівнянь з періодично 

змінними в часі коефіцієнтами в дослідженні [91] використовується розривний 

метод Гальоркіна, який, є точним, стабільним і локально консервативним. 

Розривний метод Гальоркіна знаходить стаціонарні періодичні рішення задач 

структурної динаміки з постійними коефіцієнтами, або розв’язання рівняння 

жорстких лопатей несучого гвинта гвинтокрила, які представляють собою 

параметричні звичайні диференціальні рівняння з періодично змінними в часі 

коефіцієнтами. Розривний метод Гальоркіна дозволяє розробляти оцінки 
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помилок на рівні елементів. Запропоновано і продемонстровано дві адаптивні 

стратегії. 

Представлений [110] гібридизований розривний метод Гальоркіна для 

розв’язання стійких і залежних від часу диференціальних рівнянь з 

частинними похідними в механіці суцільного середовища. Гібридизований 

розривний метод Гальоркіна має високу точність, та кілька унікальних 

особливостей. 

Книга [69] присвячена теорії та застосуванню розривних методів 

Гальоркіна. У першій частині цієї книги розглядаються теоретичні аспекти 

розривних методів Гальоркіна, що застосовується для чисельного вирішення 

скалярних нелінійних задач конвекції-дифузії. Друга частина присвячена 

застосуванню розривного методу Гальоркіна для вирішення задач газової 

динаміки. 

Авторами роботи [45] запропоновано розривний метод Гальоркіна 

вищого порядку для розв’язання стохастичних звичайних диференціальних 

рівнянь. На основі розривного методу Гальоркіна для детермінованих 

звичайних диференціальних рівнянь будується наближене детерміноване 

звичайне диференціальне рівняння з випадковими коефіцієнтами для кожного 

елемента. Доведено, що запропонований стохастичний метод розриву 

Гальоркіна еквівалентний стохастичному методу Рунге-Кутти. Метод 

придатний для вирішення жорстких стохастичних звичайних 

диференціальних рівнянь і систем [47]. Запропоновано та проаналізовано 

суперзбіжний розривний метод Гальоркіна для нелінійних початково-

крайових задач другого порядку для звичайних диференціальних рівнянь [46]. 

У [48] пропонується оптимально збіжний розривний метод Гальоркіна для 

нелінійних звичайних диференціальних рівнянь третього порядку. 

Встановлено характеристики збіжності для розв’язку та для двох допоміжних 

змінних, які апроксимують першу та другу похідні розв’язку. 

Представлена методика [90] розрахунку пружності багатошарових 

оболонок. Основними особливостями є: представлення середньої поверхні 
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оболонки за допомогою загальної системи криволінійних координат, 

уніфікована обробка загальної оболонки та внутрішня розривна схема 

Гальоркіна для вирішення ряду рівнянь. Комбінуючи ці функції, можна 

вирішити задачу багатошарових оболонок більш високого порядку, або 

проаналізувати багатошарові оболонки, які зазвичай мають вигнуту форму. 

Чисельна поведінка рівнянь дифузії з випадковими коефіцієнтами 

досліджується [59] шляхом наближення статистичного моменту рішення. 

Стохастичний метод Гальоркіна використовується для обробки стохастичної 

області, а розривний метод Гальоркіна використовується для дискретизації 

просторової області. 

Досліджено [58] чисельну поведінку детермінованої задачі 

оптимального керування, що описується рівнянням дифузії з невизначеними 

вхідними даними. Для дискретизації стохастичної області застосовано 

стохастичний метод Гальоркіна, який перетворює вихідну задачу оптимізації, 

що включає невизначеність, у велику систему детермінованих задач. Проте 

для просторової дискретизації зручніший розривний метод Гальоркіна для 

кращої збіжності до задачі оптимізації. Виконується аналіз помилок для 

змінних стану та суміжних змінних. 

Пропонується новий алгоритм [80], який поєднує метод довільного 

лагранжево-ейлерового скінченного об’єму та довільний лагранжево-

ейлеровий розривний метод Гальоркіна в один стабільний та ефективний 

гібридний підхід. Основна проблема змішаного методу скінченних об’ємів 

довільного Лагранжа-Ейлера та методу довільного Лагранжа-Ейлера-

Гальоркіна полягає в тому, щоб максимально зменшити розбіжність між обома 

дискретизаціями. 

 

1.4. Асимптотичні розв’язки рівняння Кортевега‒де Фріса 

 

Нелінійне рівняння Кортевега‒де Фріза (КдФ) застосовують для 

математичного опису різноманітних явищ, пов’язаних з хвилями. Важливою 
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рисою цих рівнянь є здатність генерувати солітонні розв’язки. У випадку 

вивчення хвильових процесів в середовищах, властивості яких змінюються, ці 

рівняння зі змінними коефіцієнтами виступають відповідними математичними 

моделями. Оскільки рівняння КдФ і подібні мають солітонні розв’язки, то 

можна знайти розв’язки інтегральних рівнянь зі змінними коефіцієнтами, які 

за формою дуже схожі на солітонні. Розв’язки інтегральних рівнянь зі 

змінними коефіцієнтами, які мають вигляд, близький до солітонного, 

називають солітоноподібними. 

У дослідженні [95], використовуючи напівобернений метод, виведено 

варіаційний принцип для узагальненого рівняння Кортевега-де Фріса та 

нелінійного рівняння. Особливою привабливістю запропонованого методу є 

його вражаюча простота та лаконічність отриманих варіаційних функціоналів 

для значного спектру нелінійних задач. Застосування методу перетворень 

забезпечує більш компактний вигляд варіаційного функціоналу, дозволяючи 

досягти того ж результату, використовуючи менше похідних. 

У статті [26] подано алгоритм побудови двофазних солітоноподібних 

асимптотичних розв’язків рівняння КдФ зі змінними коефіцієнтами, що мають 

малі параметри першого порядку для похідних вищих порядків. 

Після цього, у роботі [22], представлено множину початкових умов, що 

дозволяють задачі Коші для сингулярно збуреного рівняння Кортевега‒де 

Фріса, яке містить змінні коефіцієнти, мати асимптотичне двофазне 

солітоноподібне рішення. Розглянуто концепцію множини початкових 

значень для поставлених задач Коші, які приводять до існування таких 

розв’язків. 

Дослідження [25] розкриває низку початкових умов, за яких задача 

Коші для сингулярно збурених рівнянь КдФ зі змінними коефіцієнтами 

демонструє асимптотичне двофазове солітоноподібне рішення. 

Сформульовано концепцію множини початкових значень для задач Коші, які 

призводять до таких розв’язків. Окреслено теорему про наближення між 

точним розв’язком задачі та отриманим асимптотичним розв’язком. 
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У [24] представлено асимптотичні розв’язки солітонного типу для 

рівняння Кортевега‒де Фріса зі змінними коефіцієнтами, враховуючи малі 

параметри першого порядку у старших похідних. Викладено алгоритм, який 

дозволяє обчислити ці асимптотичні розв’язки, та продемонстровано його 

практичне застосування на конкретному варіанті рівняння КдФ з чітко 

визначеними змінними коефіцієнтами. 

Доповідь [23] зосереджена на асимптотичному дослідженні 

сингулярних рівнянь збурень Кортевега–де Фріса зі змінними коефіцієнтами, 

що застосовуються для моделювання хвильових явищ у середовищах з 

нестатичними характеристиками. Викладено метод конструювання 

наближених розв’язків (або асимптотичних розв’язків), які демонструють 

властивості, подібні до розв’язків солітонів. 

Стаття [98] присвячена рівнянню типу Кортевега-де Фріса, як прикладу 

для ілюстрації еволюції мілководних хвиль. Рівняння представлено з 

використанням дробової просторово-часової похідної Рімана-Ліувілля. 

Застосовано дробові оператори для зведення рівняння до дробового 

звичайного диференціального рівняння. Результатом є однопараметрична 

група перетворень, а також отримання конкретного розв’язку спеціального 

вигляду для досліджуваної моделі. Встановлено закони збереження для 

просторово-часового дробового КдФ-подібного рівняння. 

Дослідження [123] зосереджено на пошуку та аналізі асимптотичних 

розв’язків солітонного типу для рівняння Кортевега-де Фріса, особливо у 

випадку сингулярного збурення, представленого малим коефіцієнтом при 

старшій похідній, та змінних коефіцієнтів. Ці розв’язки демонструють 

схожість із солітонними розв’язками, які зустрічаються в стандартному 

рівнянні Кортевега-де Фріса з постійними коефіцієнтами. Методологія 

спирається на нелінійний метод ВКБ для конструювання даних розв’язків. 
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1.5. Аналітичні та числові підходи до розв’язання 

диференціальних рівнянь з дельта-функцією Дірака 

 

Нову структуру математичного моделювання для визначення 

пластичної поведінки металів при циклічному навантаженні запропоновано у 

праці [108]. Проаналізовано сильні та слабкі сторони моделей для опису 

форми кривої напруження-деформації. Описано нову формулу кінематичного 

зміцнення, яка більш точно відтворює залежність напруження-деформації при 

циклічних впливах. Запроваджено дельта-функції Дірака для представлення 

ефектів переходу, що виникають під час реверсивного навантаження. 

Друга частина дослідження [109] зосереджується на удосконаленні 

дельта-функцій Дірака для опису циклічного зміцнення та розм’якшення 

матеріалу в умовах циклічного навантаження. Два параметри зміцнення, які 

використовуються в розробленій формулі кінематичного зміцнення, виражені 

як функції діапазону пластичних деформацій і вже накопиченої пластичної 

деформації. Розроблено новий критерій зміни діапазону пластичних 

деформацій. Цей критерій підвищує надійність циклічного моделювання 

пластичності, в порівнянні з класичним підходом, який базується на 

запам’ятовуванні пластичних деформацій. 

У статті [136] пропонується метод, що використовує формулювання 

одновимірних скінченних різниць на декартовій сітці, що дозволяє відносно 

легко пристосувати його до одно-, дво- або тривимірних задач. Виведення в 

основному спирається на формули скінченних різниць. 

У роботі [75] розглядається дробова похідна дельта-функції Дірака та 

її перетворення Лапласа для розв’язків систем дробового порядку. Також, 

наводиться перетворення Лапласа дробової похідної дельта-функції Дірака. 

Для розв’язування інтегрального рівняння та системи дробового порядку 

використано дробову похідну дельта-функції Дірака та її перетворення 

Лапласа. 
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Досліджено [83] проблеми оптимізації та керування для систем, що 

описуються диференціальними рівняннями у часткових похідних, в яких 

коефіцієнти та праві частини належать різним функціональним просторам. 

Основним об’єктом є модель, що визначається загальним диференціальним 

рівнянням з нульовими початковими та граничними умовами. Зосереджені 

джерела представлені дельта-функцією Дірака. Коефіцієнти в цій області 

вважаються додатними. Використовуючи простір вимірних та квадратично-

інтегрованих функцій, сформовано спряження для функцій, гладких у 

досліджуваній області. Проведено дослідження узагальненого розв’язку цієї 

задачі та створено від’ємні простори. 

У статті [137] описано детальне дослідження збіжності нелінійних 

функціоналів, похідних функціоналів та функціонально-диференціальних 

рівнянь. Показано, що швидкість збіжності таких наближень функціоналів 

може бути експоненціальною, що залежить від регулярності функціоналу та 

від його області визначення. Доведено, що безперервні нелінійні функціонали, 

функціональні похідні та функціонально-диференціальні рівняння можна 

рівномірно наблизити. Для цього використовуються багатовимірні функції та 

диференціальні рівняння з частинними похідними у багатовимірному 

просторі. 

Досліджуються [79] імпульсні лінійні диференціальні рівняння 

першого порядку з позиції теорії ймовірностей. Всі параметри, що впливають 

на ці рівняння, включаючи початкові умови та коефіцієнти, представлені 

абсолютно неперервними випадковими величинами зі спільною щільністю 

розподілу ймовірностей. Розглядається нескінченна кількість дельта-

імпульсів Дірака, що подаються в задані моменти часу. Основний інструмент 

дослідження − метод перетворення випадкових величин, який дозволяє 

отримати явний вираз для розв’язку стохастичного процесу та вивести 

випадкові послідовності для максимальних і мінімальних значень розв’язку. 

У дослідженні [55], застосовується метод функцій Гріна, розроблений 

Аткінсоном та Кратером, для отримання розв’язку одновимірного рівняння з 
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потенціалом дельта-похідної 𝜆𝛿′(𝑥), де 𝜆 – це константа взаємодії. З’ясовано 

узагальнені середні значення хвильової функції та її першої похідної для 

розширення стандартного визначення добутку 𝛿′(𝑥) на тестову функцію. 

Одержано явні вирази для хвильових функцій. Ймовірності проходження 

хвилі у випадку розсіяння залежать від енергії та константи зв’язку 𝜆. 

У праці [63] здійснено ортонормування функцій розв’язків рівняння з 

контактним потенціалом, визначеним дельта-похідною потенціалу Дірака 

𝜆𝛿′(𝑥), де 𝜆 – константа зв’язку. Розв’язок задачі включає спектри як з 

дискретною, так і з неперервною енергією. Доводиться ортогональність 

розв’язків розсіяння один до одного та до зв’язаних станів. 

У дослідженні [134] запропоновано прямий інтегральний метод для 

задач з системами статичних і динамічних структур. Спочатку, статичні 

формули для ряду, паралельних та змішаних систем визначаються за 

допомогою спільної функції. Базуючись на інтегральному рівнянні, 

запропоновано прямий інтегральний метод, реалізований у двох варіантах. У 

першому варіанті, формули системи з використанням функції Хевісайда 

аналітично виводяться з інтегрального рівняння. Другий варіант використовує 

функцію, отриману шляхом згладжування дельта-функції Дірака. 

Дослідження [11] відкриває можливість опису нелінійних явищ, що 

виникають під впливом локальних імпульсів внутрішнього тиску в 

оболонкових системах. За умови урахування фізико-механічних 

характеристик застосованих матеріалів та особливостей силового впливу, 

вони можуть бути використані у чисельних методиках з метою визначення 

параметрів міцності та вантажопідйомності відповідних конструкцій. 

Важливим внеском [112] є використання наближеного аналітичного 

методу для розв’язання нелінійної задачі зовнішньої балістики, що враховує 

систему параметрів, які змінюються з часом. Вперше було одержано формулу 

тривимірного розподілу параметрів вільного падіння в атмосфері, який 

залежить від часу вільного падіння, при умові наявності відмінної від нуля 

початкової швидкості. Адаптувати методи аналітичної механіки та 
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диференціальних рівнянь зі змінними коефіцієнтами для розв’язання 

прикладної задачі стало можливо після отримання характеристик розподілу, з 

урахуванням аеродинамічної якості об’єкта. Сформована характеристика 

тривимірної поверхні дає змогу досліджувати аеродинамічну якість об’єкта за 

допомогою обчислювальних методів. 

Об’єктом дослідження статті [16] є процес розтікання та горіння рідини 

на ґрунті. При розтіканні рідини на похилій поверхні створено математичну 

модель. Модель складається з системи диференціального рівняння 

параболічного типу, яке описує зміну області розливу та товщини шару рідини 

в кожній точці області, та звичайного диференціального рівняння, що визначає 

глибину просочування рідини в ґрунт. Врахування нерівності поверхні 

відбувається шляхом введення в диференціальне рівняння розповсюдження 

рідини додаткового члену, який містить середню глибину нерівностей 

поверхні. Характер розтікання рідини задає початкові умови: миттєвий або 

безперервний. Безперервний розлив виникає при пошкодженні ємності або 

трубопроводу, внаслідок чого об’єм розлитої рідини поступово збільшується. 

У цьому випадку диференціальне рівняння розтікання рідини містить доданок 

з 𝛿-функцією. Миттєвий розлив має місце у випадку катастрофічного 

руйнування ємності. При цьому 𝛿-функція включена в початкову умову. 

Дослідження [129] зосереджується на деяких прикладних аспектах 

дельта-функції Дірака. Використовуючи цю функцію, отримано інтегральне 

представлення для різниці між функціями та їх інтегралами. Використовуючи 

відомі властивості дельта-функції Дірака, знайдені точні вирази для верхніх 

меж відхилень функцій від операторів. 

Розглядається [68] розривний метод Гальоркіна для обчислення 

розв’язків лінійних хвильових рівнянь. Запропонований дискретний метод 

Гальоркіна забезпечує точність розв’язку. Цей метод сформульовано для 

хвильового рівняння, представленого у вигляді повної форми першого 

порядку. Перетворення до форми першого порядку реалізовано шляхом 

введення допоміжної змінної, яка згладжує деяку сингулярність рівняння. 
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У дослідженні [128] демонструється підхід до розрахунку аналітичних 

розв’язків лінійних диференціальних рівнянь і нейтральних диференціальних 

рівнянь, котрі містять вхідні дані, представлені дельта-функцією Дірака. 

Розв’язки отримано на основі методу перетворення Лапласа, доповненого 

теоремою Коші. Оскільки аналітичний розв’язок для однієї дельта-функції на 

вході є неперервним, показано високу надійність розв’язку за допомогою 

перетворення Лапласа для лінійних диференціальних рівнянь. 

Запропоновано [49] узагальнений алгебраїчний аналіз просторів 

розв’язків звичайних диференціальних рівнянь другого порядку з 

періодичною дельта-функцією Дірака. Чисельний аналіз просторів розв’язків 

обчислюється на основі змін коефіцієнтів, що виявляє набір однорідних 

відповідей у просторах розв’язків. 

 

1.6. Висновки 

 

Аналіз аналітичного огляду галузі дослідження диференціальних 

рівнянь, зосереджений на асимптотичних і чисельних методах, вказує на 

потребу подальшого дослідження нелінійних диференціальних рівнянь та їх 

систем зі змінними коефіцієнтами в умовах наявності 𝛿-функції Дірака. 

Особлива увага приділена задачам математичної фізики, зокрема проблемам 

механіки, які враховують вплив локалізованих збурень. 
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РОЗДІЛ 2 

ЗАСТОСУВАННЯ ГІБРИДНОГО АСИМПТОТИЧНОГО ПІДХОДУ ДО 

РОЗВ’ЯЗКУ ЗАДАЧ МАТЕМАТИЧНОЇ ФІЗИКИ, ЯКІ ЗВОДЯТЬСЯ ДО 

НЕЛІНІЙНИХ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ ЗІ ЗМІННИМИ 

КОЕФІЦІЄНТАМИ ПРИ НАЯВНОСТІ 𝛅-ФУНКЦІЇ 

 

 

Чисельні методи, що застосовуються для розрахунків при побудові 

нових конструкцій з параметрами, які змінюються за координатами та часом, 

зокрема багатошарових пластин та оболонок обертання з композитних 

матеріалів змінної маси, які піддаються зовнішньому тиску, що залежить від 

часу, аналітично не дають переконливих результатів та вимагають значного 

комп’ютерного ресурсу. Отже, отримання точного рішення нелінійних 

сингулярних диференціальних рівнянь зі змінними коефіцієнтами та 

𝛿- функцією, які використовуються при проєктуванні подібних конструкцій, 

залишається актуальним завданням у теорії диференціальних рівнянь. В 

останні роки для аналітичного розв’язання задач широко використовуються 

гібридні асимптотичні методи, засновані на методах збурень та фазних 

інтегралів (метод ВКБ) [1, 5, 7, 8, 18, 19, 53, 94, 114, 122, 135], що дозволяють 

знаходити досить точні наближені рішення, незалежні від величини 

параметрів при старшій похідній. Деякі варіанти розв’язання задач можна 

побачити у наступних дослідженнях. 

У статті [139] описано формулювання розривного методу Гальоркіна 

та його практичне втілення для дослідження просторових похідних вищого 

порядку, що зустрічаються в рівнянні Кана-Гілліарда. Рівняння Кана-

Гілліарда ‒ це нелінійне параболічне диференціальне рівняння з частинними 

похідними четвертого порядку. Раніше, у фаховій літературі, для знаходження 

просторових похідних четвертого порядку застосовувалися змішані методи 

скінченних елементів, або інтерполяційні функції з високим ступенем 
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неперервності. Розроблений розривний метод Гальоркіна дозволяє уникнути 

необхідності їх використовувати. 

У праці [15] досліджуються вимушені поздовжні коливання стрижня, 

що характеризуються довільною безперервною поздовжньою жорсткістю та 

аналогічним розподілом маси, які піддаються гармонійному навантаженню, 

враховуючи сили протидії. Здобуто точне розв’язання диференціального 

рівняння, яке описує вимушені поздовжні коливання стрижня з довільними 

безперервними параметрами, також включаючи сили опору. Отримано 

аналітичні формули, що описують динамічні коливання та внутрішні зусилля, 

що дає поштовх до розробки нових підходів для аналізу поздовжніх коливань 

стрижнів. 

У статті [53] пропонується формальне аналітичне рішення для 

лінійного диференціального рівняння довільного порядку 𝑛 із змінними 

коефіцієнтами. Розв’язок отримано шляхом зведення задачі до рівнянь 

першого порядку. Цей підхід також дає змогу знайти розв’язки 

диференціальних рівнянь з операторами нескінченної розмірності. 

Запропонована апроксимація є гладкою поблизу точок повороту для 

звичайних диференціальних рівнянь. Метод легко узагальнюється для 

диференціальних рівнянь вищих порядків. 

У роботі [41] було розглянуто розв’язування лінійних звичайних 

диференціальних рівнянь зі змінними коефіцієнтами. Запропонована методика 

може бути використана для систем лінійних звичайних диференціальних 

рівнянь зі змінними коефіцієнтами. 

У дослідженні [78] розглянуто метод Гальоркіна для дискретизації 

дробових диференціальних рівнянь, де коефіцієнти змінюються. Введення 

додаткового дробового члена, що має нижчий порядок, сприяє 

переформулюванню завдання в еквівалентну задачу та доведенню коректності 

задачі Діріхле через виведення умови для коефіцієнта дифузії. 

Використовуючи нову формулу, застосовано метод Гальоркіна та встановлено 

оцінки похибок при деякому припущенні регулярності для суміжної задачі. 
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Такий підхід Гальоркіна демонструє можливість безпосереднього 

застосування до двовимірних задач зі змінними коефіцієнтами. Для методів 

вищого порядку сингулярність є тільки на кінцевих точках. 

 

2.1. Постановка задачі про розв’язок нелінійного 

диференціального рівняння з 𝜹-функцією у правій частині. Наближений 

аналітичний розв’язок за гібридним асимптотичним підходом 

 

Основне диференціальне рівняння задачі динаміки систем з дискретно-

неперервними властивостями та коефіцієнтами, які змінюються за часом, в 

нелінійній формі, зокрема у формі рівняння Дюффінга, набуває вигляду: 

 

𝑦′′(𝑡) + 𝛼(𝑡)𝑦′(𝑡) + 𝜔2(𝑡)𝑦(𝑡) = −𝑁(𝑡)𝑦3(𝑡) − 𝛾(𝑡)𝑦′(𝑡)𝛿(𝑡 − 𝑡0).     (2.1) 

 

Розділивши обидві частини рівняння на 𝜔0
2, отримуємо: 

 

𝜀2[𝑦′′(𝑡) + 𝛼(𝑡)𝑦′(𝑡)] + 𝛽(𝑡)𝑦(𝑡) = −𝑁̅(𝑡)𝑦3(𝑡) − 𝛾̅(𝑡)𝑦′(𝑡)𝛿(𝑡 − 𝑡0),  (2.2) 

 

де 𝜀2 =
1

𝜔0
2 ≪ 1, 

𝜔0
2 ≫ 1 ‒ власна частота коливань, 

𝛿(𝑡 − 𝑡0) ‒ функція Дірака, 

𝑁̅ = 𝜇𝑁̅0(𝑡), 

𝜇 ‒ параметр нелінійності системи (𝜇 < 0). 

 

Одержане рівняння є прообразом диференціального рівняння 

Дюффінга, яке містить кубічну нелінійність. Застосуємо гібридний 

асимптотичний підхід для розв’язання такого рівняння. Використаємо метод 

збурень, що дозволить подати функцію 𝑦(𝑡) у вигляді асимптотичного ряду за 

параметром 𝜇: 
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𝑦(𝑡) = 𝑦0(𝑡) + 𝜇𝑦1(𝑡) + 𝜇2𝑦2(𝑡) + ⋯ = ∑ 𝜇𝑖𝑦𝑖(𝑡)𝑛
𝑖=0 .             (2.3) 

 

Після підстановки розкладу (2.3) у рівняння (2.2), отримаємо рівняння 

у першому наближенні: 

 

𝜀2[𝑦0
′′(𝑡) + 𝛼(𝑡)𝑦0

′ (𝑡)] + 𝛽(𝑡)𝑦0(𝑡) = −𝛾̅(𝑡)𝑦0
′ (𝑡)𝛿(𝑡 − 𝑡0).          (2.4) 

 

Застосовуючи метод ВКБ, або метод фазних інтегралів [94], однорідне 

рівняння: 

 

𝜀2[𝑦0
′′(𝑡) + 𝛼(𝑡)𝑦0

′ (𝑡)] + 𝛽(𝑡)𝑦0(𝑡) = 0 

 

матиме розв’язання виду: 

 

𝑦0(𝑡) = 𝐶1 exp [∫ (𝑖𝜀−1𝛽
1

2⁄ (𝑡) −
𝛼(𝑡)

2

𝜑0
′ (𝑡)

𝜑0(𝑡)
) 𝑑𝑡] +

                                                     +𝐶2 exp [∫ (−𝑖𝜀−1𝛽
1

2⁄ (𝑡) −
𝛼(𝑡)

2

𝜑0
′ (𝑡)

𝜑0(𝑡)
) 𝑑𝑡].        (2.5) 

 

Вважаючи, що: 

 

𝜑01,2
(𝑡) = ±𝑖𝛽

1
2⁄ (𝑡) 

 

розв’язання (2.5) можна записати у вигляді: 

 

𝑦0(𝑡) = exp [
1

4
∫ 𝛼(𝑡)

𝛽′(𝑡)

𝛽(𝑡)
𝑑𝑡] ∙ [𝐶1 cos(𝑘(𝑡)) + 𝐶2 sin(𝑘(𝑡))], 

 

де 𝑘(𝑡) = ∫ 𝜀−1𝛽
1

2⁄ (𝑡)𝑑𝑡. 
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Якщо 𝛼(𝑡) = 0, розв’язання (2.5) спрощується. Використаємо 

гібридний підхід: 

 

𝑦0(𝑡) = 𝐶1 cos(𝑘(𝑡)) + 𝐶2 sin(𝑘(𝑡)). 

 

Застосовуючи метод варіації довільних сталих отримуємо розв’язок 

неоднорідного рівняння (2.4): 

 

𝑦0(𝑡) = 𝐶1(𝑡) cos(𝑘(𝑡)) + 𝐶2(𝑡) sin(𝑘(𝑡)).                (2.6) 

 

Підставимо (2.6) у (2.4) для знаходження сталих 𝐶1(𝑡) та 𝐶2(𝑡), маємо 

першу похідну: 

 

𝑦0
′ (𝑡) = 𝑘′(𝑡)[−𝐶1(𝑡) sin(𝑘(𝑡)) + 𝐶2(𝑡) cos(𝑘(𝑡))].         (2.7) 

 

Друга похідна має вид: 

 

𝑦0
′′(𝑡) = 𝑘′′(𝑡)[−𝐶1(𝑡) sin(𝑘(𝑡)) + 𝐶2(𝑡) cos(𝑘(𝑡))] +

+𝑘′(𝑡)[−𝐶1
′(𝑡) sin(𝑘(𝑡)) +𝐶2

′(𝑡) cos(𝑘(𝑡))] +

                               +𝑘′2(𝑡)[−𝐶1(𝑡) cos(𝑘(𝑡)) − 𝐶2(𝑡) sin(𝑘(𝑡))].                    (2.8) 

 

За умови, що: 

 

𝑘′(𝑡) =
𝛽

1
2⁄ (𝑡)

𝜀
 

 

у рівняння (2.4) підставляємо (2.6), (2.7) та (2.8): 
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𝑘′′(𝑡)[−𝐶1(𝑡) sin(𝑘(𝑡)) + 𝐶2(𝑡) cos(𝑘(𝑡))] + 𝑘′(𝑡)[−𝐶1
′(𝑡) sin(𝑘(𝑡)) +

+𝐶2
′(𝑡) cos(𝑘(𝑡))] − 𝑘′2(𝑡)[𝐶1(𝑡) cos(𝑘(𝑡)) + 𝐶2(𝑡) sin(𝑘(𝑡))] +

             +𝑘′2(𝑡)[𝐶1(𝑡) cos(𝑘(𝑡)) + 𝐶2(𝑡) sin(𝑘(𝑡))] = −𝛾̅(𝑡)𝑦0
′ (𝑡)𝛿(𝑡 − 𝑡0). 

 

За умови, що 𝑘′′(𝑡) можна нехтувати, маємо систему алгебраїчних 

рівнянь для визначення невідомих сталих 𝐶1(𝑡) та 𝐶2(𝑡): 

 

{
𝐶1

′(𝑡) cos(𝑘(𝑡)) + 𝐶2
′(𝑡) sin(𝑘(𝑡)) = 0

−𝐶1
′(𝑡) sin(𝑘(𝑡)) + 𝐶2

′(𝑡) cos(𝑘(𝑡)) = 𝐹(𝑡)
, 

 

де 𝐹(𝑡) = −
𝛾̅(𝑡)

𝑘′(𝑡)
𝑦0

′ (𝑡)𝛿(𝑡 − 𝑡0). 

 

Враховуючи властивості 𝛿-функції Дірака та функцію 𝐹(𝑡), отримуємо 

функції 𝐶1(𝑡) і 𝐶2(𝑡): 

 

𝐶1(𝑡) = 𝛾1(𝑡0)𝑦0
′ (𝑡0), 

𝐶2(𝑡) = 𝛾2(𝑡0)𝑦0
′ (𝑡0), 

 

де 𝛾1(𝑡0) =
𝛾̅(𝑡0)sin (𝑘(𝑡0))

𝑘′(𝑡0)
, 

𝛾2(𝑡0) =
𝛾̅(𝑡0)cos (𝑘(𝑡0))

𝑘′(𝑡0)
. 

 

Отже, загальне розв’язання лінійної неоднорідної задачі у першому 

наближенні має вигляд: 

 

𝑦0(𝑡) = cos(𝑘(𝑡)) [𝐶1 + 𝛾1(𝑡0)𝑦0
′ (𝑡0)] + sin(𝑘(𝑡)) [𝐶2 − 𝛾2(𝑡0)𝑦0

′ (𝑡0)]. 

 

Тоді функція основного рівняння у другому наближені за параметром 𝜇: 
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𝑦1(𝑡) = cos(𝑘(𝑡)) [𝑑1 + ∫ 𝑁̃01
(𝑡)𝑑𝑡 + 𝛾1(𝑡0)𝑦0

′ (𝑡0)] +

                             + sin(𝑘(𝑡)) [𝑑2 − ∫ 𝑁̃02
(𝑡)𝑑𝑡 + 𝛾2(𝑡0)𝑦0

′ (𝑡0)], 

 

де 𝑁̃01
(𝑡) = 𝑁̅0 sin(𝑘(𝑡)), 

𝑁̃02
(𝑡) = 𝑁̅0 cos(𝑘(𝑡)). 

 

Отримаємо загальний розв’язок нелінійного диференціального 

рівняння (2.1) виду: 

 

𝑦(𝑡) = 𝑦0(𝑡) + 𝜇𝑦1(𝑡) = cos(𝑘(𝑡)) [𝐶1 + 𝛾1(𝑡0)𝑦0
′ (𝑡0)] + sin(𝑘(𝑡)) [𝐶2 +

+𝛾2(𝑡0)𝑦0
′ (𝑡0)] + 𝜇{cos(𝑘(𝑡)) [𝑑1 + 𝛾1(𝑡0)𝑦0

′ (𝑡0) + ∫ 𝑁̃01
(𝑡)𝑑𝑡] +

+ sin(𝑘(𝑡)) [𝑑2 − 𝛾2(𝑡0)𝑦0
′ (𝑡0) − ∫ 𝑁̃02

(𝑡)𝑑𝑡]} = cos(𝑘(𝑡)) {𝐶1̅ +

+(1 + 𝜇)𝛾1(𝑡0)𝑦0
′ (𝑡0) + 𝜇 ∫ 𝑁̃01

(𝑡)𝑑𝑡} + sin(𝑘(𝑡)) {𝐶2̅ − (1 +

+𝜇)𝛾2(𝑡0)𝑦0
′ (𝑡0) − 𝜇 ∫ 𝑁̃02

(𝑡)𝑑𝑡}, 

 

де 𝐶1̅ = 𝐶1 + 𝜇𝑑1, 

𝐶2̅ = 𝐶2 + 𝜇𝑑2. 

 

2.2. Чисельний розв’язок основного диференціального рівняння 

задачі. Порівняння з аналітичним розв’язком 

 

Як приклад чисельного розв’язку розглянемо диференціальне рівняння 

вигляду: 

 

𝜀2𝑦′′(𝑡) + 𝛽(𝑡)𝑦(𝑡) = −𝛾̅(𝑡)𝑦′(𝑡)𝛿(𝑡 − 𝑡0). 

 

Задаємо функції 𝛽(𝑡) та 𝛾̅(𝑡): 

 

𝛽(𝑡) = 𝑡2, 
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𝛾̅(𝑡) = 𝑡. 

 

Однорідне рівняння: 

 

𝜀2𝑦о
′′(𝑡) + 𝑡2𝑦о(𝑡) = 0 

 

при початкових умовах: 

 

𝑦0(0) = 1, 

𝑦1
′ (0) = 0. 

 

має розв’язок: 

 

𝑦о(𝑡) = cos [
𝑡2

2𝜀
]. 

 

Тоді рішення лінійної неоднорідної задачі виглядає так: 

 

𝑦̃0(𝑡) = cos [
𝑡2

2𝜀
] {𝐶1 + 𝛾1(𝑡0) cos [

𝑡2

2𝜀
]} + sin [

𝑡2

2𝜀
] {𝐶2 − 𝛾2(𝑡0) cos [

𝑡2

2𝜀
]}. 

 

За умови, що 

 

𝛾1(𝑡0) = 𝜀 sin (
𝑡0

2

2𝜀
), 

𝛾2(𝑡0) = 𝜀 cos (
𝑡0

2

2𝜀
) 

 

рішення запишеться як: 
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𝑦̃0(𝑡) = cos [
𝑡2

2𝜀
] {𝐶1 + 𝜀 sin [

𝑡0
2

2𝜀
] cos [

𝑡2

2𝜀
]} + sin [

𝑡2

2𝜀
] {𝐶2 + 𝜀 cos [

𝑡0
2

2𝜀
] cos [

𝑡2

2𝜀
]}. 

 

Враховуючи, що 𝜀 = 0,1 та 𝑡0 = 0,5, розв’язання запишемо у формі: 

 

𝑦̃0(𝑡) = cos[5𝑡2] {𝐶1 + 0,095 cos[5𝑡2]} + sin[5𝑡2] {𝐶2 − 0,032 cos[5𝑡2]}. 

 

Підставимо початкові умови, щоб знайти коефіцієнти 𝐶1 та 𝐶2. 

Кінцевий розв’язок рівняння має вигляд: 

 

𝑦̃0(𝑡) = cos[5𝑡2] {0,905 + 0,095 cos[5𝑡2]} + sin[5𝑡2] {−0,032 cos[5𝑡2]}. 

 

На рисунках 2.1‒2.4 показано результати розрахунків прямого 

чисельного інтегрування, за допомогою системи комп’ютерної алгебри 

«Mathematica» [142], та результати обчислень, виконаних гібридним 

асимптотичним методом, основного рівняння задачі: 

 

 

 

Рисунок 2.1 ‒ Розв’язок рівняння, отриманий на базі гібридного 

асимптотичного методу (𝜀 = 0,1) 
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Рисунок 2.2 ‒ Розв’язок рівняння, отриманий на базі прямого чисельного 

інтегрування (𝜀 = 0,1) 

 

 

 

Рисунок 2.3 ‒ Порівняння наближеного аналітичного (1) та чисельного (2) 

розв’язків при 𝜀 = 0,1 
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Рисунок 2.4 ‒ Тривимірна залежність розв’язку від малого параметру 𝜀 

 

2.3. Висновки 

 

Надано наближене аналітичне рішення неоднорідного 

диференціального рівняння зі змінними коефіцієнтами та 𝛿-функцією. 

Розглянуто чисельне розв’язання основного диференціального рівняння. 

Показано на графіках порівняння розв’язків отриманих за допомогою прямого 

чисельного інтегрування та з використанням гібридного асимптотичного 

методу. 
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РОЗДІЛ 3 

АНАЛІЗ НЕЛІНІЙНИХ КОЛИВАНЬ ПОЛОГИХ ОБОЛОНОК ІЗ 

ФУНКЦІОНАЛЬНО-ГРАДІЄНТНИХ МАТЕРІАЛІВ ЗІ ЗМІННИМИ У 

ЧАСІ ПАРАМЕТРАМИ ЗА НАЯВНОСТІ ЛОКАЛІЗОВАНОГО 

ЗБУРЕННЯ 

 

 

Локалізоване періодичне зовнішнє збурення, що впливає на сучасні 

силові компоненти конструкцій нової техніки, є одним з ключових факторів 

впливу на динамічні характеристики та нелінійну поведінку в умовах, що є 

наближеними до робочих. На стадії створення нових конструкцій та систем, з 

точки зору раціонального проєктування, важливим є наявність надійних та 

ефективних інженерних алгоритмів розрахунку, що базуються на аналітико-

числових підходах. Це вимагає, зокрема, існування аналітичних залежностей, 

що дозволяють надати обґрунтовані рекомендації щодо вибору оптимальних 

параметрів з точки зору несучої здатності конструкції зі змінними 

параметрами, враховуючи реальні схеми зовнішнього навантаження [64, 65, 

138], та, в деяких випадках, оцінити результати прямого чисельного 

розрахунку [81, 82, 86, 111]. Розробка відповідних аналітичних методів 

розрахунку динамічних характеристик геометрично нелінійних систем зі 

змінними параметрами із застосуванням дельта-функції Дірака є актуальним 

завданням механіки деформівного твердого тіла. Точні аналітичні розв’язки 

таких задач, що зводяться до диференціальних рівнянь сингулярного типу зі 

змінними коефіцієнтами та їх систем, можна отримати лише у виняткових 

випадках. У зв’язку з широким використанням сучасної комп’ютерної техніки 

набули поширення чисельні методи, зокрема методи скінчених та граничних 

елементів. Прикладами досліджень можуть слугувати наступні роботи. 

У статті [30] розроблено алгоритм, що дозволяє звести сингулярно 

збурену систему диференціальних рівнянь, де присутній малий або великий 

параметр, зокрема, рівняння з малим параметром біля похідної, до системи з 
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простими коренями. Алгоритм застосовується у випадку кратних коренів 

характеристичного рівняння, при цьому отримана система буде мати змінні 

коефіцієнти. 

У роботі [29] досліджуються деякі проблеми, що виникають при 

асимптотичному інтегруванні сингулярно збурених систем диференціальних 

рівнянь. Зокрема, увага зосереджена на аналізі існування точок повороту, 

особливих точок та інших подібних явищ. 

У праці [74] чисельно вивчаються неоднорідні дробові змінні 

коефіцієнти диференціальних рівнянь з частинними похідними. Це робиться 

за допомогою алгоритму, розробленого в MAPLE 18, який базується на новому 

ітераційному методі. Метод уникає обчислення довгих виразів та оцінки 

інтегралів. Розглянуто поведінку дробових змінних коефіцієнтів, як парних, 

так і непарних, у диференціальному рівнянні з частинними похідними 

першого порядку. Підхід поєднує три важливі якості: простоту, швидкість та 

надійність. 

У статті [84] було продемонстровано, як зв’язану систему лінійних 

диференціальних рівнянь, де коефіцієнти змінюються, можливо 

трансформувати до тридіагонального вигляду. Для цього використовується 

метод, залежний від часу, за умови виконання конкретних вимог щодо 

регулярності. Розв’язок вихідної диференціальної системи представлено як 

кінцеву множину інтегральних рівнянь, придатних для обчислень. 

У дослідженні [115] розглядається диференціальне рівняння третього 

порядку виду: ℎ(𝑡)𝑥′′′ + 𝑒(𝑡)𝑥′′ + 𝑓(𝑡)𝑥′ + 𝑔(𝑡)𝑥 = 0, де величини ℎ, 𝑒, 𝑓 та 𝑔 

представляють дійсні змінні коефіцієнти. Головний висновок полягає в тому, 

що стійкість вказаного рівняння доведена, якщо два додаткові диференціальні 

рівняння, відмінні від вихідного, мають комплекснозначний розв’язок. 

Отримані результати можна застосувати при розв’язанні диференціальних 

рівнянь Ейлера та диференціальних рівнянь зі сталими коефіцієнтами. 

Асимптотичні підходи тісно пов’язані з фізичною суттю проблеми, що 

дозволяє глибше зрозуміти її, а також побудувати наближені аналітичні 
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залежності. Асимптотичні методи забезпечують єдиний підхід до різних, на 

перший погляд, задач, таких як нелінійна динаміка конструкцій із 

функціонально-градієнтних матеріалів. Зі швидким розвитком нанотехнологій 

в електронній промисловості та силових елементів конструкцій оболонкового 

типу в ракетно-космічних системах значно зріс інтерес до проблем 

застосування функціонально-градієнтних матеріалів. Відомо [88], що 

ефективність функціонально-градієнтних матеріалів базується на 

використанні двох або більше компонентів з різними фізичними та 

механічними властивостями, що є необхідними для створення раціональної 

конструкції. Також існують наступні варіації властивостей функціонально-

градієнтного матеріалу: експоненціальний, Морі–Танака, сигмоїдний, 

степеневий та інші закони. Моделюванню функціонально-градієнтних 

матеріалів присвячено роботу [88]. 

Дуже складно отримати точні аналітичні розв’язки систем рівнянь 

теорії багатошарових пластин та оболонок для задач нелінійної динаміки та 

стійкості конструкцій, особливо з параметрами, що змінюються в часі, та 

локалізованими особливостями геометрії і зовнішнього навантаження, через 

їх значну математичну складність розв’язання. Звідси виникає потреба у 

розробці ефективних гібридних наближених аналітико-числових методів 

дослідження на основі сучасних асимптотичних підходів. Дослідники 

зосереджують увагу на викликах нелінійної динаміки конструкцій з 

параметрами, що змінюються в часі. Це питання є особливо актуальним для 

оболонок з функціонально-градієнтних матеріалів, які піддаються 

локалізованому зовнішньому впливу. Для вивчення статико-динамічних 

процесів у функціонально-градієнтних матеріалах конструкцій зі змінними в 

часі властивостями, велика увага приділяється методам, що дозволяють 

розширити сферу застосування асимптотичних підходів за параметром 

розширення. 
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3.1. Основне диференціальне рівняння нелінійної динаміки функ-

ціонально-градієнтних матеріалів пологих оболонок з товщиною, 

залежною від часу 

 

Нелінійний аналітичний аналіз динаміки опирається на систему 

рівнянь, як вказано в [88]. Вважається, що функціонально-градієнтна полога 

оболонка, що має шарнірне закріплення на кінцях, знаходиться під впливом 

зовнішнього тиску 𝑞0(𝑡) та стискальних зусиль 𝑟0(𝑡), 𝑝0(𝑡). Модуль пружності 

𝐸(𝑧) та масова щільність 𝜌(𝑧) зазнають змін по товщині, коефіцієнт Пуассона 

залишається сталим, а товщина оболонки залежить від часу ℎ(𝑡). 

Об’ємні фракції металу та кераміки 𝑉𝑚, 𝑉𝑐 приймаємо за степеневим 

законом: 

 

𝑉𝑚 + 𝑉𝑐 = 1 

𝑉𝑐 = (
2𝑧 + ℎ(𝑡)

2ℎ(𝑡)
)

𝑘

, 

 

де 𝑉𝑚 ‒ об’ємні фракції металу, 

𝑉𝑐 ‒ об’ємні фракції кераміки, 

ℎ(𝑡) ‒ товщина оболонки, 

𝑘 ‒ показник фракцій компонентів матеріалу. 

Модуль пружності, масова цілісність та коефіцієнт Пуассона для 

даного об’єкту можемо визначити за наступними формулами: 

 

𝐸(𝑧) = 𝐸𝑚𝑉𝑚 + 𝐸𝑐𝑉𝑐 = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚) (
2𝑧 + ℎ(𝑡)

2ℎ(𝑡)
)

𝑘

 

𝜌(𝑧) = 𝜌𝑚𝑉𝑚 + 𝜌𝑐𝑉𝑐 = 𝜌𝑚 + (𝜌𝑐 − 𝜌𝑚) (
2𝑧 + ℎ(𝑡)

2ℎ(𝑡)
)

𝑘

 

𝜈(𝑧) = 𝑐𝑜𝑛𝑠𝑡 
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Використовуємо геометрично нелінійні залежності для випадків 

значних переміщень, згідно з теорією Кармана. Враховуючи початкові 

дефекти геометричної форми серединної поверхні пологої оболонки, 

отримуємо систему диференціальних рівнянь: 

 

1

𝐸1
𝛥𝛥𝜙 = −𝑘1

𝜕2(𝑤 − 𝑤0)

𝜕𝑥2
2 − 𝑘2

𝜕2(𝑤 − 𝑤0)

𝜕𝑥1
2 + [(

𝜕2𝑤

𝜕𝑥1𝜕𝑥2
)

2

−
𝜕2𝑤

𝜕𝑥1
2 ⋅

𝜕2𝑤

𝜕𝑥2
2 ] − 

− [(
𝜕2𝑤0

𝜕𝑥1𝜕𝑥2
)

2

−
𝜕2𝑤0

𝜕𝑥1
2 ⋅

𝜕2𝑤0

𝜕𝑥2
2 ] = 0 

𝜌1

𝜕2𝑤

𝜕𝑡2
+

𝐸1𝐸3 − 𝐸2
2

𝐸1(1 − 𝜈2)
𝛥𝛥(𝑤 − 𝑤0) + 2

𝜕2𝜙

𝜕𝑥1𝜕𝑥2
·

𝜕2𝑤

𝜕𝑥1𝜕𝑥2
−

𝜕2𝜙

𝜕𝑥1
2 ·

𝜕2𝑤

𝜕𝑥2
2 − 

−𝑘2

𝜕2𝜙

𝜕𝑥1
2 − 𝑘1

𝜕2𝜙

𝜕𝑥2
2 = 𝑞0 

 

Застосуємо метод Бубнова–Гальоркіна. Припустимо, що функції 

початкових недосконалостей та нормального переміщення відповідають 

умовам шарнірного опору оболонки у вигляді: 

 

𝑤0(𝑥1, 𝑥2) = 𝑓0 𝑠𝑖𝑛 (
𝑚𝜋𝑥1

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑥2

𝑏
), 

 

де 𝑓0 ‒ задана амплітуда початкових недосконалостей, 

𝑚, 𝑛 ‒ хвильові числа у напрямках 𝑥1 та 𝑥2. 

Функція деформування виглядає наступним чином: 

 

𝑤(𝑥1, 𝑥2, 𝑡) = 𝑓(𝑡) 𝑠𝑖𝑛 (
𝑚𝜋𝑥1

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑥2

𝑏
), 

 

що призводить до основного рівняння задачі нелінійної динаміки 

функціонально-градієнтних матеріалів пологої оболонки зі змінними у часі 

параметрами: 
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𝜌1
𝜕2𝑤

𝜕𝑡2
+ [

𝐸1𝐸3−𝐸2
2

𝐸1(1−𝑣2
·

(𝑚2+𝑛2𝜆2)𝜋4

𝑎4
+

𝐸1(𝑘1𝑛2𝜆2+𝑘2𝑚2)

(𝑚2+𝑛2𝜆2)2
] (𝑓 − 𝑓0)  −

16𝐸1𝑚𝑛𝜆2(𝑘1𝑛2𝜆2+𝑘2𝑚2)

3𝑎2(𝑚2+𝑛2𝜆2)2
[𝑓2 − 𝑓0

2 + 2𝑓(𝑓 − 𝑓0)] +

512𝐸1𝑚2𝑛2𝜆4

9𝑎4(𝑚2+𝑛2𝜆2)2
𝑓(𝑓2 − 𝑓0

2) =
16𝑄 𝑠𝑖𝑛(𝛺𝑡)

𝜋2𝑚𝑛(1−𝑡)
                                       (3.1) 

 

Спростивши рівняння (3.1), дістанемо сингулярне диференціальне 

рівняння другого порядку, і на відміну від [88], з коефіцієнтами, що 

змінюються з часом: 

 

𝜀2
𝑑2𝑓

𝑑𝑡2
+ 𝑓(1 + 2𝑓0 𝐴̄2(𝑡) − 𝐴̄3(𝑡)𝑓0

2 − 𝐴̄1(𝑡)) + 𝑓2(−3𝐴̄2(𝑡)) + 

+𝑓3𝐴̄3(𝑡) = 𝑄0 − 𝐴̄0(𝑡) + 𝑓0 − 𝐴̄2(𝑡)𝑓0
2,                         (3.2) 

 

де коефіцієнти мають форму: 

 

𝜀2 =
1

𝜔𝑚𝑛
2 ; 𝐴0(𝑡) =

16ℎ(𝑡)

𝜋2𝑚𝑛
(𝑘1𝑟0 + 𝑘2𝑝0); 

 

𝐴1(𝑡) =
𝜋2ℎ(𝑡)

𝑎2𝑣
(𝑚2𝑟0 + 𝑛2𝜆2𝑝0); 𝐴2(𝑡) =

16𝐸1(𝑡)𝑚𝑛𝜆2(𝑘1𝑛2𝜆2+𝑘2𝑚2)

3𝑎2(𝑚2+𝑛2𝜆2)2
; 

 

𝐴3(𝑡) =
512𝐸1(𝑡)𝑚2𝑛2𝜆4

9𝑎4(𝑚2+𝑛2𝜆2)2
; 𝐴̄𝑖 =

𝐴𝑖

𝜔𝑚𝑛
2 ; 

 

𝜔𝑚𝑛
2 =

1

𝜌1(𝑡)
[
(𝐸1𝐸3 − 𝐸2

2)

𝐸1(1 − 𝜈2)
⋅

(𝑚2 + 𝑛2𝜆2)𝜋2

𝑎4
+

𝐸1(𝑘1𝑛2𝜆2 + 𝑘2𝑚2)2

(𝑚2 + 𝑛2𝜆2)2
] ; 

 

𝐸1(𝑡) = (𝐸𝑚 +
𝐸𝑐−𝐸𝑚

𝑘+1
) ℎ(𝑡); 𝜌1 = (𝜌𝑚 +

𝜌𝑐−𝜌𝑚

𝑘+1
) ℎ(𝑡), 

 

де 𝑘1, 𝑘2 - кривизна серединної поверхні оболонки у напрямках 𝑥1 та 𝑥2. 
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Рівняння (3.2) може бути записане у вигляді: 

 

𝜀2𝑓 ′′(𝑡) + 𝐵1(𝑡)𝑓(𝑡) = 𝑄0(𝑡)𝛿(𝑡 − 𝑡0) − 𝜇𝑁(𝑡) − 𝐴̄0(𝑡) + 𝑅(𝑡, 𝑡0),   (3.3) 

 

де 𝜀, 𝜇 –  параметри розвинення, 

 

𝑄0(𝑡) = 𝑎(𝑡) 𝑠𝑖𝑛(𝛺𝑡) ; 

𝑁(𝑡) = 𝑏(𝑡)𝑓(𝑡)2 + 𝐶(𝑡)𝑓(𝑡)3; 

𝐴̄0(𝑡) =
16ℎ(𝑡)

𝜋2𝑚𝑛
(𝑘1𝑟0 + 𝑘2𝑝0); 

𝑅(𝑡, 𝑡0) = 𝑓0 − 𝐴̄2(𝑡)𝑓0
2. 

 

3.2. Наближений аналітичний розв’язок рівняння нелінійної 

динаміки функціонально-градієнтних матеріалів пологих оболонок із 

початковими недосконалостями і зовнішнім навантаженням 

 

Згідно з методом збурень [81, 82] стосовно параметра нелінійності 𝜇, 

розв’язок рівняння (3.3) отримуємо у вигляді двочленної апроксимації: 

 

𝑓(𝑡) = 𝜑0(𝑡) + 𝜇𝜑1(𝑡).                                   (3.4) 

 

Підставляючи (3.4) в рівняння (3.3) та прирівнюючи коефіцієнти при 

однакових степенях параметру нелінійності 𝜇, приходимо до взаємопов’язаної 

системи лінійних неоднорідних диференціальних рівнянь зі змінними у часі 

коефіцієнтами, що дозволяють знайти невідомі функції 𝜑0(𝑡) та 𝜑1(𝑡): 

 

𝜇0: 𝜀2𝜑0
′′ (𝑡) + 𝐵1(𝑡)𝜑0 = 𝑄̄0; 

𝜇1: 𝜀2𝜑1
′′(𝑡) + 𝐵1(𝑡)𝜑1 = −𝐵2(𝑡)𝜑0

2 − 𝐵3(𝑡)𝜑0
3, 
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які розв’язуємо методом двочленного наближення Вентцеля—Крамерса—

Бріллюена (ВКБ) [6, 87]: 

 

𝜑0(𝑡) = 𝜑0
0(𝑡) + 𝜑0

𝑝(𝑡) =

= 𝐵1
0.25 [𝑠𝑖𝑛(𝑘(𝑡)) (𝐶1 + 𝐶̄1(𝑡)) + 𝑐𝑜𝑠(𝑘(𝑡)) (𝐶2 + 𝐶̄2(𝑡))], 

 

де 

 

𝐶̄1 = 𝜀∫
𝑃(𝑡) 𝑐𝑜𝑠(𝑘(𝑡))

𝐵1
−0.25(𝑡)

𝑑𝑡; 

𝐶̄2 = −𝜀∫
𝑃(𝑡) 𝑠𝑖𝑛(𝑘(𝑡))

𝐵1
−0.25(𝑡)

𝑑𝑡; 

𝑃(𝑡) = 𝑄0𝛿(𝑡 − 𝑡0) − 𝐴̄0(𝑡) + 𝑅(𝑡). 

 

Загальний розв’язок нелінійної задачі, отриманий методом ВКБ з 

використанням двочленної апроксимації, має вид (3.4). У дужках: перша 

складова відповідає за власні коливання системи, друга – за вимушені 

коливання, а третя – за нелінійну складову: 

 

𝑓(𝑡) = 𝜑0(𝑡) + 𝜇𝜑1(𝑡)

= 𝐵1(𝑡)0,25 {
𝑠𝑖𝑛(𝑘(𝑡)) (𝐶1 + 𝐶̄1(𝑡) + 𝜇 (𝑑1 + 𝑑̄1(𝑡))) +

+ 𝑐𝑜𝑠(𝑘(𝑡)) (𝐶2 + 𝐶̄2(𝑡) + 𝜇 (𝑑2 + 𝑑̄2(𝑡)))
}, 

 

де 𝑑̄1; 𝑑̄2 ‒ нелінійні складові: 

 

𝑑̄1(𝑡) = 𝜀∫
(−𝐵2(𝑡)𝜑0

2 − 𝐵3(𝑡)𝜑0
3)𝑃(𝑡) 𝑐𝑜𝑠(𝑘(𝑡))

𝐵1
−0,25(𝑡)

𝑑𝑡; 

𝑑̄2(𝑡) = −𝜀∫
(−𝐵2(𝑡)𝜑0

2 − 𝐵3(𝑡)𝜑0
3)𝑄̄0(𝑡) 𝑠𝑖𝑛(𝑘(𝑡))

𝐵1
−0,25(𝑡)

𝑑𝑡. 
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Сталі 𝐶1 та 𝐶2 до точки локалізації зовнішнього збурення обчислюємо з 

урахуванням початкових умов: 

 

𝜑0
0(0) = 1; 𝜑0

0′(0) = 0. 

 

3.3. Лінійна динаміка пологої оболонки за заданих параметрів і 

зовнішнього навантаження 

 

Наведемо результати обчислень для заданих параметрів задачі: 

 

𝐵1(𝑡) = 1 + 𝑡; 𝑃(𝑡) = 0,5 𝑠𝑖𝑛(10𝑡); 

𝑡0 = 0,5; 𝜀 = 0,1; 

 

відповідно до запропонованого наближеного аналітичного методу та прямого 

числового інтегрування основного рівняння задачі при заданому характері 

локалізованого збурення: 

 

𝜀2𝑓″(𝑡) + (1 + 𝑡)𝑓(𝑡) = 0,5 𝑠𝑖𝑛(10𝑡) − 0,1𝑡 + 0,1 − 𝑡 + 𝑅𝛿(𝑡 − 𝑡0); 

 

𝜀2𝑓″(𝑡) + (1 + 𝑡)𝑓(𝑡) = 0,1 + 0,5 𝑠𝑖𝑛(10𝑡) − 0,1𝑡 + [𝑓0 − 𝑡𝑓0
2]𝛿(𝑡 − 𝑡0); 

 

𝜀2𝑓″(𝑡) + (1 + 𝑡)𝑓(𝑡) = 0,5 𝑠𝑖𝑛(10𝑡) + [𝑓0 − 𝑡𝑓0
2]𝛿(𝑡 − 𝑡0); 

 

𝜀2𝑓″(𝑡) + (1 + 𝑡)𝑓(𝑡) = 0,5 𝑠𝑖𝑛(10𝑡) · 𝛿(𝑡 − 𝑡0); 

 

𝐶̄1(𝑡) = 𝜀∫
0,5 𝑐𝑜𝑠(10𝑡) + 𝛿(𝑡 − 0,5)

(1 + 𝑡)−0,25
𝑑𝑡; 

 

𝐶̄1(𝑡0) = 0,5𝜀(1 + 𝑡)0,25 𝑐𝑜𝑠[10𝑡]|𝑡0=0,5 = 0,0157; 
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𝐶̄2(𝑡0) = −0,5𝜀(1 + 𝑡)0,25 𝑠𝑖𝑛[10𝑡]|𝑡0=0,5 = 0,053; 

 

𝜑0(0) = 1; 𝑘(𝑡) = ∫ 𝜀−1(1 + 𝑡)0,5𝑑𝑡 =
20

3
(1 + 𝑡)1,5; 

 

𝜑0(0) = (1 + 𝑡)0,25 {
𝑠𝑖𝑛 [

20

3
(1 + 𝑡)1,5] (𝐶1 + 0,0157) +

+ 𝑐𝑜𝑠 [
20

3
(1 + 𝑡)1,5] (𝐶2 + 0,053)

}|

𝑡=0

= 1; 

 

𝑠𝑖𝑛 [
20

3
] (𝐶1 + 0,0157) + 𝑐𝑜𝑠 [

20

3
] (𝐶2 + 0,053) = 1; 

 

−1 + 0,3742𝐶1 + 0,0059 + 0,0492 + 0,9274𝐶2 = 0; 

 

𝐶2 =
1

0,9274
[1 − 0,3742𝐶1 − 0,0059 − 0,0492]; 

 

𝐶2 = 1,02 − 0,403𝐶1; 

 

𝜑0
′ (0) = 0; 

 

𝜑0
′ (0) ⇒ 9,274𝐶1 + 0,1456 − 0,198 − 3,742𝐶2 + 

+0,094𝐶1 + 0,0015 + 0,232𝐶2 + 0,0125 = 0; 

 

−0,04 + 9,368𝐶1 − 3,51𝐶2 = 0, −0,04 + 9,368𝐶1 − 3,51(1,02 − 0,403𝐶1) = 0; 

 

−0,04 − 3,58 + 1,414𝐶1 + 9,368𝐶1 = 0; 

 

𝐶1 = 0,336; 
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𝐶2 = 0,385; 

 

𝜑0(𝑡) = (1 + 𝑡)0,25 {𝑠𝑖𝑛 [
20

3
(1 + 𝑡)1,5] · 0,352 + 𝑐𝑜𝑠 [

20

3
(1 + 𝑡)1,5] · 0,938}. 

 

На рисунках 3.1‒3.5 представлено результати обчислень, отриманих з 

використанням наближеного аналітичного підходу та прямого числового 

інтегрування рівняння задачі, виконаного за допомогою системи 

комп’ютерної алгебри «Mathematica» [142]: 

 

 

 

Рисунок 3.1 ‒ Розв’язок задачі за допомогою прямого числового інтегрування 

рівняння 𝑃(𝑡) = 𝐴𝑆𝑖𝑛[Ω𝑡] ⋅ 𝐷𝑖𝑟𝑎𝑐𝐷𝑒𝑙𝑡𝑎[𝑡 − 0.5], зокрема для 𝐴 = 0.5; Ω = 10 
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Рисунок 3.2 ‒ Порівняння прямого числового розв’язання (1) з наближеним 

асимптотичним розв’язком (2) в зоні, наближеній до точки локального 

збурення 

 

 

 

Рисунок 3.3 ‒ Порівняння прямого числового розв’язання (1) з наближеним 

асимптотичним розв’язком (2) до точки локалізації збурення 
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Рисунок 3.4 ‒ Порівняння прямого числового розв’язання (1) з наближеним 

асимптотичним розв’язком (2) за точкою локалізації збурення (зовнішня 

асимптотика) 

 

 

 

Рисунок 3.5 ‒ Тривимірна залежність впливу частоти зовнішнього 

локалізованого періодичного навантаження 

 

3.4. Висновки 

 

Для аналізу впливу нелінійного характеру досліджуваної системи з 

часовими параметрами згідно з представленим підходом, необхідно визначити 
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ВКБ-розв’язки сингулярних лінійних рівнянь зі змінними коефіцієнтами у 

двох наближеннях до величини часу локалізованого збурення (внутрішня 

асимптотика), а також в околі і поза точкою локалізації збурення (зовнішня 

асимптотика). Отримані розв’язки дозволяють інженерам-конструкторам 

розширити можливості застосування функціонально-градієнтних матеріалів у 

машинобудуванні, аерокосмічній промисловості (наприклад, для силових 

елементів в оболонкових конструкціях), будівництві та електроніці, зокрема, 

у нанотехнологіях. 
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РОЗДІЛ 4 

ДИНАМІКА ПРУЖНОЇ СИСТЕМИ ІЗ ЗМІННИМИ ЗА ЧАСОМ 

ПАРАМЕТРАМИ ТА НЕЛІНІЙНОЮ ФУНКЦІЄЮ ДЕМПФУВАННЯ 

ПРИ НАЯВНОСТІ ЛОКАЛІЗОВАНОГО ЗОВНІШНЬОГО ЗБУРЕННЯ 

 

 

Актуальною проблемою математичної фізики є розробка аналітично-

чисельних підходів для обчислення динамічних властивостей нелінійних 

пружних систем з параметрами, що варіюються в часі та координатах, з 

урахуванням впливу локалізованого зовнішнього збурення [3, 126, 133], яке 

моделюється функцією Дірака. Тільки в особливих випадках є можливість 

отримати точні аналітичні рішення згаданих проблем, які зводяться до 

диференціальних рівнянь сингулярного типу зі змінними коефіцієнтами та 

їхніх систем, з наявністю нелінійності та параметрів біля старшої похідної 

рівняння. Асимптотичні методи відкривають єдиний підхід до розв’язання 

різноманітних прикладних задач, наприклад, задач нелінійної динаміки 

конструкцій при локалізованому збуренні [10, 89], за умови використання 

програм комп’ютерної алгебри. Відтак, ґрунтуючись на сучасних 

асимптотичних методах, існує потреба в розробці ефективних наближених 

гібридних аналітико-чисельних алгоритмів [81, 82] дослідження. Методи, які 

дають змогу розширити область застосування асимптотичних підходів за 

параметрами розкладу для аналізу статико-динамічних процесів [87], 

зосереджують на собі велику увагу дослідників. Більш детальні можливості 

застосування методів для розв’язання задач описано в статтях. 

Для диференціального рівняння в часткових похідних досліджено [14] 

задачу з локальними умовами зі змінною часу відносно найбільшої похідної за 

часом зі змінними коефіцієнтами. Доведено теорему, що стосується оцінки 

знизу малого знаменника, котрий з’являється під час розв’язку поставленої 

задачі. Отримані результати можуть бути узагальнені на випадок лінійних 
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диференціальних рівнянь, збурених нелінійними інтегрально-

диференціальними операторами. 

Автори дослідження [97] виводять спектр нелінійної амплітудної та 

частотної модуляції з загальної моделі автогенератора, розглядаючи збурення 

потужності, спричинене модуляційним сигналом. Обчислено частотну 

залежність індексу модуляції, що дає змогу визначити ширину смуги 

модуляції для осциляторів. Крім того, осцилятор під час модуляції виявляє 

поведінку фільтра низьких частот з частотою зрізу, яка зазвичай залежить від 

робочої точки конкретного зразка. Передбачається погіршення характеристик 

модуляції осцилятора в частотно-залежних дослідженнях. Проте, рішення 

ряду Фур’є може перетворити геометрію осцилятора, яка описується 

загальним рівнянням автоосцилятора, збуреного повільно змінним в часі 

сигналом, у набір лінійних, пов’язаних між собою рівнянь. 

Дослідження [121] описує чисельний підхід для вирішення початкових 

та граничних задач, які стосуються диференціальних рівнянь з дробовими 

похідними та просторовими диференціальними операторами найпростішої 

форми. Диференціальне рівняння з дробовими похідними, завдяки розкладу 

Фур’є за просторовою змінною, перетворюється на ланцюжок звичайних 

диференціальних рівнянь, які підлягають розв’язанню. Представлений метод 

використовується для задач з граничними умовами Діріхле щодо просторової 

координати. Також, можливе застосовування до задач з умовами ширшого 

спектру, а за належного вибору базисних функцій − і до задач 

осесиметричного типу. 

Автори [42] представляють чисельний спосіб для знаходження 

розв’язків диференціальних рівнянь з дробовими похідними за часом, які 

мають просторові диференціальні оператори другого порядку загального 

виду. Основна система, складена з власних функцій просторового оператора, 

застосовується для перетворення вихідного дробового диференціального 

рівняння в часткових похідних на серію незалежних дробових звичайних 

диференціальних рівнянь для кожного коливання. Для знаходження рішень 
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цих дробових звичайних диференціальних рівнянь використовуються 

чисельні методи зворотної підстановки. 

 

4.1. Постановка і розв’язок задачі динаміки пружної системи із 

нелінійною функцією демпфування 

 

Досліджується розв’язання диференціального рівняння другого 

порядку, де перша похідна має нелінійний характер, що представлено у 

вигляді: 

 

𝑦′′ + 𝜀𝑎(𝑥)𝑦′𝑛
+ 𝜆2𝑏(𝑥)𝑦 = 0,      (4.1) 

 

де 𝑦(𝑥) ‒ шукана функція; 

𝑎(𝑥),𝑏(𝑥) ‒ задані функції; 

𝑛 ‒ степінь першої похідної; 

𝜀, 𝜆 ‒ параметри, з умовою, що 𝜀 < 1 та 𝜆 > 1. 

 

Як початкові умови приймається: 

 

𝑦(0) = 1, 𝑦′(0) = 0. 

 

Застосовуючи метод збурення [87], знаходиться розв’язок рівняння, 

представлений у вигляді: 

 

𝑦(𝑥) = 𝑦0(𝑥) + 𝜀𝑦1(𝑥) + 𝜀2𝑦2(𝑥) + ⋯ = ∑ 𝜀𝑖𝑦𝑖(𝑥)𝑛
𝑖=0 .             (4.2) 

 

Для знаходження загального розв’язку використовуються перші два 

члени (4.2): 

 

𝑦(𝑥) = 𝑦0(𝑥) + 𝜀𝑦1(𝑥),      (4.3) 
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𝑦0
′′(𝑥) + 𝜀𝑦1

′′(𝑥) + 𝜀𝑎(𝑥)[𝑦0
′ (𝑥) + 𝜀𝑦1

′ (𝑥)]𝑛 + 𝜆2𝑏(𝑥)[𝑦0(𝑥) + 𝜀𝑦1(𝑥)] = 0. 

 

В розв’язання (4.3) підставляється перша початкова умова: 

 

𝑦0(0) + 𝜀𝑦1(0) = 1. 

 

За однакових показників степеня параметра 𝜀 маємо: 

 

𝑦0(0) = 1, 𝑦1(0) = 0. 

 

Використовуючи другу початкову умову: 

 

𝑦0
′ (0) + 𝜀𝑦1

′ (0) = 0 

 

отримуються залежності: 

 

𝑦0
′ (0) = 0, 𝑦1

′ (0) = 0. 

 

Досліджується однорідне диференціальне рівняння другого порядку у 

першому наближенні, застосовуючи параметр 𝜀: 

 

𝑦0
′′ + 𝜆2𝑏(𝑥)𝑦0 = 0.      (4.4) 

 

Одержується рівняння наступного вигляду, після підстановки  𝜇 =
1

𝜆
  у (4.4): 

 

𝜇2𝑦0
′′ + 𝑏(𝑥)𝑦0 = 0,       (4.5) 

 

де 𝜇 ‒ малий параметр. 

 



76 

Використовуючи метод фазних інтегралів для розв’язку рівняння (4.5) 

отримуємо: 

 

𝑦0(𝑥) = exp (∫ 𝜑(𝑥)𝑑𝜉),     (4.6) 

 

де 𝜑(𝑥) = 𝜇−1𝜑0(𝑥) + 𝜇0𝜑1(𝑥) + ⋯ ‒ невідомі функції. 

 

Обчислимо першу та другу похідні 𝑦0(𝑥) за умови використання лише 

першого елемента розвинення у рівнянні (4.6): 

 

𝑦0
′ (𝑥) = 𝜑(𝑥)𝑒𝑥𝑝(∫ 𝜑(𝑥)𝑑𝜉),                        (4.7) 

 

𝑦0
′′(𝑥) = (𝜑2(𝑥) + 𝜑′(𝑥))exp (∫ 𝜑(𝑥)𝑑𝜉).            (4.8) 

 

Знаходиться розв’язання для функції 𝜑0(𝑥), з урахуванням (4.6), (4.7) та (4.8), 

які підставляються у рівняння (4.5): 

 

𝜑0
2(𝑥) = −𝑏(𝑥), 

𝜑01,2
(𝑥) = ±𝑖𝑏(𝑥)

1

2. 

 

Застосовуючи метод ВКБ [5] отримується розв’язання рівняння (4.5) виду: 

 

𝑦0(𝑥) = 𝐶1 sin(𝑘(𝑥)) + 𝐶2cos (𝑘(𝑥)),    (4.9) 

 

де 𝑘(𝑥) = ∫ 𝜇−1𝜑0(𝑥)𝑑𝑥 = ∫ 𝜆𝑏(𝑥)
1

2𝑑𝑥 = 𝜆 ∫ 𝑏(𝑥)
1

2𝑑𝑥. 

 

Таким чином, розв’язання (4.9) матиме такий вигляд: 
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𝑦0(𝑥) = 𝐶1 sin (𝜆 ∫ 𝑏(𝑥)
1

2𝑑𝑥) + 𝐶2cos (𝜆 ∫ 𝑏(𝑥)
1

2𝑑𝑥).  (4.10) 

 

Значення коефіцієнта 𝐶2 визначається, враховуючи першу початкову 

умову, при розв’язанні рівняння (4.10): 

 

𝑦0(0) = 𝐶1 sin (𝜆 ∫ 𝑏(0)
1
2𝑑𝑥) + 𝐶2 cos (𝜆 ∫ 𝑏(0)

1
2𝑑𝑥) = 

= 𝐶1 sin(0) + 𝐶2 cos(0) = 𝐶1 ∙ 0 + 𝐶2 ∙ 1 = 𝐶2 = 1. 

 

Обчислимо першу похідну (4.10): 

 

𝑦0
′ (𝑥) = 𝐶1𝜆𝑏(𝑥)

1

2 cos (𝜆 ∫ 𝑏(𝑥)
1

2𝑑𝑥) − 𝐶2𝜆𝑏(𝑥)
1

2 sin (𝜆 ∫ 𝑏(𝑥)
1

2𝑑𝑥).  (4.11) 

 

Значення коефіцієнта 𝐶1, враховуючи другу початкову умову для першої 

похідної (4.11), дорівнює: 

 

𝑦0
′ (0) = 𝐶1𝜆𝑏(0)

1
2 cos (𝜆 ∫ 𝑏(0)

1
2𝑑𝑥) − 𝐶2𝜆𝑏(0)

1
2 sin (𝜆 ∫ 𝑏(0)

1
2𝑑𝑥) = 0. 

 

З проведених обчислень отримуємо, що коефіцієнт 𝐶1 = 0, а коефіцієнт 

𝐶2 = 1. Відтак, розв’язання рівняння (4.4) матиме вигляд: 

 

𝑦0(𝑥) = cos (𝜆 ∫ 𝑏(𝑥)
1
2𝑑𝑥). 

 

Маємо неоднорідне диференціальне рівняння другого порядку при 

другому наближенні, прирівнюючи коефіцієнти при однакових степенях 𝜀1: 

 

𝑦1
′′ + 𝜆2𝑏(𝑥)𝑦1 = −𝜀𝑎(𝑥)𝑦0

′ 𝑛
,   (4.12) 
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Використовуючи метод варіації довільної сталої [5] одержується 

частинний розв’язок рівняння (4.12): 

 

𝑦1(𝑥) = 𝑦1
з(𝑥) + 𝑦1

ч(𝑥), 

 

де 𝑦1
з(𝑥) ‒ загальний розв’язок однорідного рівняння, 

𝑦1
ч(𝑥) ‒ частинний розв’язок неоднорідного рівняння. 

 

Однорідне рівняння від (4.12) може бути подане у вигляді: 

 

𝑦1
з′′ + 𝜆2𝑏(𝑥)𝑦1

з = 0.     (4.13) 

 

Отже, маємо загальний розв’язок рівняння (4.13): 

 

𝑦1
з(𝑥) = 𝐶1 sin (𝜆 ∫ 𝑏(𝑥)

1

2𝑑𝑥) + 𝐶2 cos (𝜆 ∫ 𝑏(𝑥)
1

2𝑑𝑥).        (4.14) 

 

У розв’язанні (4.14), замінивши константи невідомими функціями: 

 

𝐶1 = 𝑑1(𝑥), 𝐶2 = 𝑑2(𝑥), 

 

отримується частинний розв’язок неоднорідного рівняння (4.12): 

 

𝑦1
ч(𝑥) = 𝑑1(𝑥) sin (𝜆 ∫ 𝑏(𝑥)

1

2𝑑𝑥) + 𝑑2(𝑥) cos (𝜆 ∫ 𝑏(𝑥)
1

2𝑑𝑥).    (4.15) 

 

Маємо систему рівнянь після розв’язання рівняння методом варіації 

довільної сталої: 

 



79 

{

𝑑1
′ (𝑥) sin (𝜆 ∫ 𝑏(𝑥)

1

2𝑑𝑥) + 𝑑2
′ (𝑥) cos (𝜆 ∫ 𝑏(𝑥)

1

2𝑑𝑥) = 0

𝑑1
′ (𝑥) cos (𝜆 ∫ 𝑏(𝑥)

1

2𝑑𝑥) − 𝑑2
′ (𝑥) sin (𝜆 ∫ 𝑏(𝑥)

1

2𝑑𝑥) =
−𝜀𝑎(𝑥)𝑦0

′ 𝑛

𝜆𝑏(𝑥)
1
2

. (4.16) 

 

Для обчислення значень невідомих функцій з системи рівнянь (4.16) виразимо 

похідні 𝑑1
′ (𝑥), 𝑑2

′ (𝑥): 

 

𝑑1
′ (𝑥) = −

𝜀𝑎(𝑥)𝑦0
′ 𝑛

𝑐𝑜𝑠(𝜆 ∫ 𝑏(𝑥)
1
2𝑑𝑥)

𝜆𝑏(𝑥)
1
2

,   (4.17) 

𝑑2
′ (𝑥) =

𝜀𝑎(𝑥)𝑦0
′ 𝑛

𝑠𝑖𝑛(𝜆 ∫ 𝑏(𝑥)
1
2𝑑𝑥)

𝜆𝑏(𝑥)
1
2

.   (4.18) 

 

Для визначення невідомих функцій 𝑑1(𝑥), 𝑑2(𝑥) проінтегруємо вирази (4.17) 

і (4.18): 

 

𝑑1(𝑥) = ∫ −
𝜀𝑎(𝑥)𝑦0

′ 𝑛
𝑐𝑜𝑠(𝜆 ∫ 𝑏(𝑥)

1
2𝑑𝑥)

𝜆𝑏(𝑥)
1
2

𝑑𝑥 =

𝜀(−𝜆)𝑛−1 ∫ 𝑎(𝑥)𝑏(𝑥)
𝑛−1

2 𝑠𝑖𝑛𝑛 (𝜆 ∫ 𝑏(𝑥)
1

2𝑑𝑥) cos (𝜆 ∫ 𝑏(𝑥)
1

2𝑑𝑥) 𝑑𝑥,   (4.19) 

 

𝑑2(𝑥) = ∫
𝜀𝑎(𝑥)𝑦0

′ 𝑛
𝑠𝑖𝑛(𝜆 ∫ 𝑏(𝑥)

1
2𝑑𝑥)

𝜆𝑏(𝑥)
1
2

𝑑𝑥 =

−𝜀(−𝜆)𝑛−1 ∫ 𝑎(𝑥)𝑏(𝑥)
𝑛−1

2 𝑠𝑖𝑛𝑛+1 (𝜆 ∫ 𝑏(𝑥)
1

2𝑑𝑥) 𝑑𝑥.               (4.20) 

 

Щоб знайти розв’язання рівняння (4.12), підставимо знайдені значення 

(4.19) та (4.20) у (4.15): 
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𝑦1(𝑥)

= 𝜀(−𝜆)𝑛−1𝑠𝑖𝑛 (
𝜆

2
𝑥2) ∫ 𝑎(𝑥)𝑏(𝑥)

𝑛−1
2 𝑠𝑖𝑛𝑛 (𝜆 ∫ 𝑏(𝑥)

1
2𝑑𝑥) cos (𝜆 ∫ 𝑏(𝑥)

1
2𝑑𝑥) 𝑑𝑥

− 𝜀(−𝜆)𝑛−1𝑐𝑜𝑠 (
𝜆

2
𝑥2) ∫ 𝑎(𝑥)𝑏(𝑥)

𝑛−1
2 𝑠𝑖𝑛𝑛+1 (𝜆 ∫ 𝑏(𝑥)

1
2𝑑𝑥) 𝑑𝑥. 

 

Запишемо загальний розв’язок рівняння (4.1) у вигляді: 

 

𝑦(𝑥) = 𝑐𝑜𝑠 (𝜆 ∫ 𝑏(𝑥)
1
2𝑑𝑥)

+ 𝜀 [𝑑1(𝑥)𝑠𝑖𝑛 (𝜆 ∫ 𝑏(𝑥)
1
2𝑑𝑥) + 𝑑2(𝑥)𝑐𝑜𝑠 (𝜆 ∫ 𝑏(𝑥)

1
2𝑑𝑥)], 

 

де 

 

𝑑1(𝑥) = 𝜀(−𝜆)𝑛−1 ∫ 𝑎(𝑥)𝑏(𝑥)
𝑛−1

2 𝑠𝑖𝑛𝑛 (𝜆 ∫ 𝑏(𝑥)
1
2𝑑𝑥) cos (𝜆 ∫ 𝑏(𝑥)

1
2𝑑𝑥) 𝑑𝑥, 

𝑑2(𝑥) = −𝜀(−𝜆)𝑛−1 ∫ 𝑎(𝑥)𝑏(𝑥)
𝑛−1

2 𝑠𝑖𝑛𝑛+1 (𝜆 ∫ 𝑏(𝑥)
1
2𝑑𝑥) 𝑑𝑥. 

 

4.2. Приклад розв’язку задачі динаміки пружної системи для 

вільних коливань із нелінійним демпфуванням і локалізованим 

збуренням 

 

Права частина рівняння (4.1) за умови вільних коливань системи: 

 

𝐷0(𝑥) = 0 ⇒ 𝑦(𝑥) = 𝑦[𝑥, 𝑑1(𝑥), 𝑑2(𝑥)]. 

 

Головне рівняння задачі, за умови присутності локального збурення у системі, 

що досліджується, набуває вигляду: 

 

𝑦′′(𝑥) + 𝜀𝑎(𝑥)𝑦′𝑛(𝑥) + 𝜆2𝑏(𝑥)𝑦(𝑥) = 𝐴0𝛿(𝑥 − 𝑥0),              (4.21) 
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де 𝛿(𝑥 − 𝑥0) – функція Дірака. 

 

За умови використання методу збурення у вигляді 

 

𝑦(𝑥) = 𝑦0(𝑥) + 𝜀𝑦1(𝑥),                                         (4.22) 

 

маємо залежності з початкових умов: 

 

a) 𝑦(0) = 1, 

b) 𝑦′(0) = 0. 

 

a) 𝑦0(0) + 𝜀𝑦1(0) = 1: 

𝑦0(0) = 1, 

𝑦1(0) = 0. 

 

b) 𝑦0
′ (0) + 𝜀𝑦1

′ (0) = 0: 

𝑦0
′ (0) = 0, 

𝑦1
′ (0) = 0. 

 

Рівняння (4.21), враховуючи вираз (4.22), можна переписати наступним 

чином: 

 

𝑦0
′′(𝑥) + 𝜀𝑦1

′′(𝑥) + 𝜀𝑎(𝑥)[𝑦0(𝑥) + 𝜀𝑦1(𝑥)]𝑛 + 

+𝜆2𝑏(𝑥)[𝑦0(𝑥) + 𝜀𝑦1(𝑥)] = 𝐴0𝛿(𝑥 − 𝑥0). 

 

У першому наближенні маємо рівняння, яке має такий вигляд: 

 

𝜀0: 𝑦0
′′(𝑥) + 𝜆2𝑏(𝑥)𝑦0(𝑥) = 𝐴0𝛿(𝑥 − 𝑥0),                      (4.23) 
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де 𝐷0(𝑥) = 𝐴0𝛿(𝑥 − 𝑥0). 

 

Використовуючи метод варіації довільних сталих і метод фазних 

інтегралів та вводячи параметр 𝜇 =
1

𝜆
, шукаємо розв’язок неоднорідного 

рівняння (4.23): 

 

𝜇2𝑦0
′′(𝑥) + 𝑏(𝑥)𝑦0(𝑥) = 𝐷0(𝑥) 

 

𝜓0
3(𝑥) = 𝐶1 sin (𝜆 ∫ 𝑏(𝑥)

1
2𝑑𝑥) + 𝐶2 cos (𝜆 ∫ 𝑏(𝑥)

1
2𝑑𝑥). 

 

Застосовуючи стандартний спосіб інтегрування неоднорідного 

рівняння відповідно до 𝐷0(𝑥) знаходимо частинний розв’язок. 

Наприклад, для функції 

 

𝑏(𝑥) = 𝑥2 

 

маємо загальний розв’язок 

 

𝜓0
3(𝑥) = 𝐶1 sin (𝜆

𝑥2

2
) + 𝐶2 cos (𝜆

𝑥2

2
). 

 

Використовуючи початкові умови 

 

𝜓0(0) ⇒ 𝑦0(0) = 1 ⇒ 𝑦0(0) = 𝜓0(0) + 𝜓̅0(0) = 1 

 

і параметри системи 

 

𝐷0(𝑥) = 0, 𝑛 = 3, 𝑏(𝑥) = 𝑥2, 𝑎(𝑥) = 𝑥, 𝜀 = 0,1, 𝜆 = 10      (4.24) 
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знаходиться розв’язання рівняння 

 

𝑦(𝑥) = cos (𝜆
𝑥2

2
) + 𝜀 [𝑑1(𝑥) sin3 (𝜆

𝑥2

2
) + 𝑑2(𝑥) cos (𝜆

𝑥2

2
)] , 

 

де 

 

𝑑1(𝑥) = 𝜀(−𝜆)2 ∫ 𝑥3 sin2 (𝜆
𝑥2

2
) cos (𝜆

𝑥2

2
) 𝑑𝑥,                     (4.25) 

𝑑2(𝑥) = −𝜀(−𝜆)2 ∫ 𝑥3 sin4 (𝜆
𝑥2

2
) 𝑑𝑥.                             (4.26) 

 

Визначаємо значення 𝑑1(𝑥) та 𝑑2(𝑥) за допомогою підстановки параметрів 

системи (4.24) у (4.25) та (4.26): 

 

𝑑1(𝑥) = 10 ∫ 𝑥3 sin2(5𝑥2) cos(5𝑥2) 𝑑𝑥 

𝑑2(𝑥) = −10 ∫ 𝑥3 sin4(5𝑥2) 𝑑𝑥. 

 

𝑑1(𝑥) = −0,25 cos(10𝑥2) + 0,025 sin(10𝑥2) 

𝑑2(𝑥) = −0,9375𝑥4 + 0,025 cos(10𝑥2) − 0,0015625 cos(20𝑥2) + 

+0,25𝑥2 sin(10𝑥2) − 0,03125𝑥2 sin(20𝑥2). 

 

4.3. Результати чисельних розрахунків і порівняння із прямим 

чисельним методом аналізу 

 

Результати обчислень, отриманих числовим методом, і їх зіставлення з 

прямим чисельним аналізом зображено на рисунках 4.1‒4.3. Розрахунки 

виконано за допомогою системи комп’ютерної алгебри «Mathematica» [142]. 

Продемонстровано схожість графіків. Незначне відхилення пояснюється 

застосуванням першого наближення при створенні графіків. Можливість 



84 

отримання аналітичних розв’язків для малих значень та параметрів є головною 

перевагою цього методу. 

 

    

а)                                                           б) 

 

Рисунок 4.1 ‒ Вільні коливання системи із нелінійним демпфуванням: 

а) вплив нелінійного демпфування; б) порівняння з чисельним розв’язком 

 

            

а)                                                                б) 

 

Рисунок 4.2 ‒ Вплив локалізованого зовнішнього збурення: 

а) характер впливу локалізованого збурення; б) порівняння аналітичного і 

чисельного розв’язків при локалізованому зовнішньому збуренні 
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а)                                                                б) 

 

 

в) 

 

Рисунок 4.3 ‒ Керування динамічним процесом параметрами системи: 

а) вплив амплітуди першої похідної; б) вплив ефекту локалізованого 

збурення функції демпфування (функція Дірака при першій похідній); 

в) вплив досліджуваних ефектів. 

 

4.4. Висновки 

 

У даному розділі описано алгоритм, що поєднує асимптотичні методи 

з числовими, для розв’язання задач динаміки пружних систем з параметрами, 

що змінюються в часі, мають нелінійну функцію демпфування 𝑛-го степеня та 

зазнають локалізованого зовнішнього збурення. Але коригуючи параметри 

досліджуваної системи можна значно пом’якшити вплив зовнішнього 

збурення. Завдяки гібридному асимптотичному підходу, що базується на 

методах збурень та фазних інтегралів, з урахуванням нелінійності та 
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сингулярності базового рівняння, можливо досягти покращенних роз’язків, 

зважаючи на значення параметрів асимптотичного розвинення. 
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ВИСНОВКИ 

 

 

В даній дисертаційній роботі вирішено актуальну проблему 

асимптотичного розв’язання прикладних задач математичної фізики, зокрема 

механіки конструкцій зі змінними параметрами, що зводяться до лінійних та 

нелінійних диференціальних рівнянь зі змінними коефіцієнтами при наявності 

𝛿-функції. 

В ході дослідження, з використанням методів збурень та фазних 

інтегралів, вперше отримано наукові результати: 

– наближений аналітичний розв’язок нелінійного диференціального 

рівняння зі змінними коефіцієнтами та 𝛿-функцією у правій частині; 

– наближений аналітичний розв’язок рівняння нелінійної динаміки 

пологих оболонок з функціонально-градієнтних матеріалів і початковими 

недосконалостями при зовнішньому навантаженні; 

– запропоновано аналітичний алгоритм з використанням гібридного 

асимптотичного підходу для розрахунку динамічних характеристик 

геометрично нелінійних систем зі змінними параметрами із застосуванням 

дельта-функції Дірака; 

– отримано основні аналітичні залежності досліджуваних 

нелінійних задач; 

– надано порівняння отриманих наближених аналітичних та 

чисельних розв’язків задач дослідження з ілюстрацією ефективності 

застосованого асимптотичного підходу; 

– отримані у роботі аналітичні залежності можуть бути основою для 

застосування гібридного ВКБ-Гальоркін методу, який дозволяє будувати 

досить точне наближення розв’язку досліджуваних задач, не залежно від 

величини параметрів асимптотичного розвинення при старшій похідній і 

нелінійній складовій основного рівняння. 

Результати дисертаційної роботи впроваджено у навчальний процес 

Запорізького національного університету (Додаток Г).  
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ДОДАТОК А 

 

 

Код в системі комп’ютерної алгебри «Mathematica» для побудови 

графіків до розділу 2 

 

G1=Plot[Cos[5*(t^2)]*(0.905+0.095*Cos[5*(t^2)])+Sin[5*(t^2)]*(-

0.032*Cos[5*(t^2)]),{t,0,1},AxesLabel->{t,y0},GridLines-

>Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->Green] 

 

 

 

E1=NDSolve[{(0.1^2)*y''[t]+(t^2)*y[t]==0,y[0]==1,y'[0]==0},y,{t,0,1}] 

G2=Plot[Evaluate[y[t]/.E1],{t,0,1},AxesLabel->{t,y0},GridLines-

>Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->Blue] 
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A1=Show[G1,G2] 

 

 

 

G3=Plot3D[0.905*Cos[(t^2)/(2*e)],{t,0,1},{e,0.1,0.5},AxesLabel-> 

{t,Y},LabelStyle->{Black,Italic,FontFamily->"TimesNewRoman",12},PlotStyle-

>White] 
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ДОДАТОК Б 

 

 

Код в системі комп’ютерної алгебри «Mathematica» для побудови 

графіків до розділу 3 

 

plot[title_,sol_]:=Plot[sol,{t,0,1},PlotRange->All,Frame->True,FrameLabel-

>{{y[t],None},{Row[{t,"(sec)"}],title}},GridLines->Automatic,ImageSize-

>300,LabelStyle->{Black,Italic,FontFamily->"TimesNewRoman",12},PlotStyle-

>{Purple}] 

eq1=m y''[t]+c y'[t]+k y[t]==0.5*Sin[10*t]*DiracDelta[t-0.5] 

eq2=m y''[t]+c y'[t]+k y[t]==0 

parms={m->0.01,c->0,k->(1+t)} 

sol1=First@DSolve[{eq1/.parms,y[0]==1,y'[0]==0},y[t],t] 

sol2=First@DSolve[{eq2/.parms,y[0]==1,y'[0]==0},y[t],t] 

Q=Grid[{{plot["0.5*Sin[10*t]*DiracDelta[t-

0.5]",y[t]/.sol1],plot["0.5*Sin[10*t]",y[t]/.sol2]},{Simplify[y[t]/.sol1],Simplify[y[t

]/.sol2]}},Frame->All] 

Q=Plot[y[t]/.sol1,{t,0,1},AxesLabel->{t,y[t]},GridLines->Automatic,LabelStyle-

>{Black,Italic,FontFamily->"TimesNewRoman",12},PlotStyle->{Purple}]; 

 

k y[t]+c y′[t]+m y′′[t]==0.5 DiracDelta[-0.5+t] Sin[10 t] 

k y[t]+c y′[t]+m y′′[t]==0 

{m->0.01,c->0,k->1+t} 

{y[t]->(3.98624 -8.12877 I) ((0.0611345 +0.201444 I) AiryAi[(-0.0232079-

0.0401973 I) (-100.-100. t)]+(0.080266 +0.119352 I) AiryBi[(-0.0232079-

0.0401973 I) (-100.-100. t)]+(1. +0. I) AiryAi[(-0.0232079-0.0401973 I) (-100.-100. 

t)] HeavisideTheta[-0.5+t]-(0.617047 +0.0809508 I) AiryBi[(-0.0232079-

0.0401973 I) (-100.-100. t)] HeavisideTheta[-0.5+t])} 
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{y[t]->(1.88119 +0.306055 I) ((1. +0. I) AiryAi[(-0.0232079-0.0401973 I) (-100.-

100. t)]+(0.65324 -0.200207 I) AiryBi[(-0.0232079-0.0401973 I) (-100.-100. t)])} 

 

  

(1.88119 +0.306055 I) AiryAi[(2.32079 

+4.01973 I)+(2.32079 +4.01973 I) 

t]+(1.29014 -0.176701 I) 

AiryBi[(2.32079 +4.01973 I)+(2.32079 

+4.01973 I) t]+((3.98624 -8.12877 I) 

AiryAi[(2.32079 +4.01973 I)+(2.32079 

+4.01973 I) t]-(3.11773 -4.69315 I) 

AiryBi[(2.32079 +4.01973 I)+(2.32079 

+4.01973 I) t]) HeavisideTheta[-0.5+t] 

(1.88119 +0.306055 I) AiryAi[(2.32079 

+4.01973 I)+(2.32079 +4.01973 I) 

t]+(1.29014 -0.176701 I) 

AiryBi[(2.32079 +4.01973 I)+(2.32079 

+4.01973 I) t 

 

(1+0.5)^0.25*{Sin[(20/3)*(1+0.5)^1.5]*(0.352)+Cos[(20/3)*(1+0.5)^1.5]*(0.938)

} 

{0.863581} 

M1=Plot[(1+t)^0.25*{Sin[(20/3)*(1+t)^1.5]*(0.352)+Cos[(20/3)*(1+t)^1.5]*(0.93

8)},{t,0,1},AxesLabel->{t,fo[t]},GridLines->Automatic,LabelStyle-

>{Black,Italic,FontFamily->"TimesNewRoman",12},PlotStyle->{Green}] 
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M2=Plot[(1.8811890897821162` +0.3060545172447375` I) 

AiryAi[(2.3207944168063883` +4.019733843830848` I)+(2.3207944168063883` 

+4.019733843830848` I) t]+(1.2901413722121253` -0.17670065791795322` I) 

AiryBi[(2.3207944168063883` +4.019733843830848` I)+(2.3207944168063883` 

+4.019733843830848` I) t]+((3.986235910574694` -8.128772095644191` I) 

AiryAi[(2.3207944168063883` +4.019733843830848` I)+(2.3207944168063883` 

+4.019733843830848` I) t]-(3.1177270210725143` -4.693148757601325` I) 

AiryBi[(2.3207944168063883` +4.019733843830848` I)+(2.3207944168063883` 

+4.019733843830848` I) t]) HeavisideTheta[-0.5`+t],{t,0,1},AxesLabel-

>{t,fo[t]},GridLines->Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Purple}] 

 

 

 

Show[M1,M2,PlotRange->{{0,.7},{-1.05,1.05}}] 
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K1=Plot[(1+t)^0.25*{Sin[(20/3)*(1+t)^1.5]*(-

2.6)+Cos[(20/3)*(1+t)^1.5]*(1.65)},{t,0.5,1},AxesLabel->{t,fo[t]},GridLines-

>Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Green}] 

 

 

 

Show[M2,K1] 
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L1=Plot[(1.8811890897821162` +0.3060545172447375` I) 

AiryAi[(2.3207944168063883` +4.019733843830848` I)+(2.3207944168063883` 

+4.019733843830848` I) t]+(1.2901413722121253` -0.17670065791795322` I) 

AiryBi[(2.3207944168063883` +4.019733843830848` I)+(2.3207944168063883` 

+4.019733843830848` I) t]+((3.986235910574694` -8.128772095644191` I) 

AiryAi[(2.3207944168063883` +4.019733843830848` I)+(2.3207944168063883` 

+4.019733843830848` I) t]-(3.1177270210725143` -4.693148757601325` I) 

AiryBi[(2.3207944168063883` +4.019733843830848` I)+(2.3207944168063883` 

+4.019733843830848` I) t]) HeavisideTheta[-0.5`+t],{t,0,2},AxesLabel-

>{t,fo[t]},GridLines->Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Purple}] 

 

 

 

K2=Plot[(1+t)^0.25*{Sin[(20/3)*(1+t)^1.5]*(-

2.6)+Cos[(20/3)*(1+t)^1.5]*(1.65)},{t,0.5,2},AxesLabel->{t,fo[t]},GridLines-

>Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Green}] 
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Show[L1,K2] 

 

 

 

Plot3D[(1+t)^0.25*{Sin[(2*W/3)*(1+t)^1.5]*(0.352)+Cos[(2*W/3)*(1+t)^1.5]*(0.

938)},{t,0,0.6},{W,0,10},AxesLabel->{t,W,f[0]},LabelStyle-

>{Black,Italic,FontFamily->"TimesNewRoman",12}] 
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ДОДАТОК В 

 

 

Код в системі комп’ютерної алгебри «Mathematica» для побудови 

графіків до розділу 4 

 

A1=Plot[Cos[5*x^2]+0.1*((Sin[5*x^2])^3*(-

0.25*Cos[10*x^2]+0.025*Sin[10*x^2])+Cos[5*x^2]*(-

0.9375*x^4+0.025*Cos[10*x^2]-0.0015625*Cos[20*x^2]+0.25*x^2*Sin[10x^2]-

0.03125*x^2*Sin[20*x])),{x,0,2},AxesLabel->{x,y},GridLines-

>Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Purple}] 

 

 

 

NDSolve[{f''[x]+100*x^2*f[x]==-0.1*x*(f'[x])^3,f[0]==1,f'[0]==0},f,{x,0,2}] 

{{f->InterpolatingFunction[ ]}} 

 

A2=Plot[Evaluate[f[x]/.%],{x,0,2},AxesLabel->{x,y},GridLines-

>Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Green}] 
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Show[A1,A2] 

 

 

 

plot[title_,sol_]:=Plot[sol,{t,0,2},PlotRange->All,Frame->True,FrameLabel-

>{{y[x],None},{Row[{x,"(sec)"}],title}},GridLines->Automatic,ImageSize-

>300,LabelStyle->{Black,Italic,FontFamily->"TimesNewRoman",12},PlotStyle-

>{Blue}]; 

eq1=m*y''[t]+c* y'[t]+k *y[t]==10*Sin[10*t]*DiracDelta[(t-0.5)]; 

eq2=m *y''[t]+c (y'[t])+k* y[t]==0; 

parms={m->1,c->0.1*t,k->100*t^2}; 

sol1=First@DSolve[{eq1/.parms,y[0]==1,y'[0]==0},y[t],t]; 

sol2=First@DSolve[{eq2/.parms,y[0]==1,y'[0]==0},y[t],t]; 

Grid[{{plot["10Sin[10t]*DiracDelta[(t-

0.5)]",y[t]/.sol1],plot["0",y[t]/.sol2]},{Simplify[y[t]/.sol1],Simplify[y[t]/.sol2]}},Fr

ame->All] 
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𝑒(−0.025−4.999937499609372𝑖)𝑡2
((1. 

+ 5.551115123125783

× 10−17𝑖)Hypergeometric1F1[0.25 

− 0.001250015625292975𝑖,
1

2
, (0. 

+ 9.999874999218743𝑖)𝑡2]

+ HeavisideTheta[−0.5

+ 𝑡]((1.6895685255039512 

− 1.6776101044414244𝑖)HermiteH 

[−0.5 + 0.00250003125058595𝑖, 

(2.2360540019439092 

+ 2.2360540019439092𝑖)𝑡]

+ (1.7223066580907977 

+ 1.7151563514526325𝑖) 

Hypergeometric1F1[0.25 

− 0.001250015625292975𝑖,
1

2
, (0. 

+ 9.999874999218743𝑖)𝑡2])) 

1. 𝑒(−0.025−4.999937499609372𝑖)𝑡2
 

Hypergeometric1F1[0.25 

− 0.001250015625292975𝑖,
1

2
, 

(0.  + 9.999874999218743𝑖)𝑡2] 

 

B1=Plot[e(−0.025−4.999937499609372i)t2
 Hypergeometric1F1[0.25` -

0.001250015625292975` I,1/2,(0.` +9.999874999218743` I) t2],{t,0,2},AxesLabel-

>{x,y},GridLines->Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Green}] 
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B2=Plot[e(−0.025−4.999937499609372i)t2
 ((1.` +5.551115123125783`*^-17 I) 

Hypergeometric1F1[0.25` -0.001250015625292975` I,1/2,(0.` 

+9.999874999218743` I) t2]+HeavisideTheta[-0.5`+t] ((1.6895685255039512` -

1.6776101044414244` I) HermiteH[-0.5`+0.00250003125058595` 

I,(2.2360540019439092` +2.2360540019439092` I) t]+(1.7223066580907977` 

+1.7151563514526325` I) Hypergeometric1F1[0.25` -0.001250015625292975` 

I,1/2,(0.` +9.999874999218743` I) t2])),{t,0,2},AxesLabel->{x,y},GridLines-

>Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Blue}] 

 

 

 

Show [B1,B2,PlotRange->{{0,2},{-1.5,1}}] 
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B3=Plot[Cos[5*t^2]+0.1*((Sin[5*t^2])^3*(-

0.25*Cos[10*t^2]+0.025*Sin[10*t^2])+Cos[5*t^2]*(-

0.9375*t^4+0.025*Cos[10*t^2]-0.0015625*Cos[20*t^2]+0.25*t^2*Sin[10t^2]-

0.03125*t^2*Sin[20*t])),{t,0,2},AxesLabel->{x,y},GridLines-

>Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Purple}] 

 

 

 

Show[B2,B3] 
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Show[B1,B2,B3] 

 

 

 

Show[B1,A2] 

 

 

 

C1=Plot[e(−0.025−4.999937499609372i)t2
 Hypergeometric1F1[0.25` -

0.001250015625292975` I,1/2,(0.` +9.999874999218743` I) t2],{t,0,1},AxesLabel-
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>{x,y},GridLines->Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Green}] 

 

 

 

C2=Plot[e(−0.025−4.999937499609372i)t2
 ((1.` +5.551115123125783`*^-17 I) 

Hypergeometric1F1[0.25` -0.001250015625292975` I,1/2,(0.` 

+9.999874999218743` I) t2]+HeavisideTheta[-0.5`+t] ((1.6895685255039512` -

1.6776101044414244` I) HermiteH[-0.5`+0.00250003125058595` 

I,(2.2360540019439092` +2.2360540019439092` I) t]+(1.7223066580907977` 

+1.7151563514526325` I) Hypergeometric1F1[0.25` -0.001250015625292975` 

I,1/2,(0.` +9.999874999218743` I) t2])),{t,0,1},AxesLabel->{x,y},GridLines-

>Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Blue}] 

 

 

 

Show[C1,C2] 
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C3=Plot[Cos[5*t^2]+0.1*((Sin[5*t^2])^3*(-

0.25*Cos[10*t^2]+0.025*Sin[10*t^2])+Cos[5*t^2]*(-

0.9375*t^4+0.025*Cos[10*t^2]-0.0015625*Cos[20*t^2]+0.25*t^2*Sin[10t^2]-

0.03125*t^2*Sin[20*t])),{t,0,1},AxesLabel->{x,y},GridLines-

>Automatic,LabelStyle->{Black,Italic,FontFamily-

>"TimesNewRoman",12},PlotStyle->{Purple}] 

 

 

 

Show[C1,C2,C3,PlotRange->{{0,1},{-1,1}}] 
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ДОДАТОК Г 

 

 

Акт впровадження у навчальний процес Запорізького національного 

університету 

 

 


