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АНОТАЦІЯ 

 
 

Жуков О.О. Нейромережеві моделі ідентифікації стану бджолиної сім’ї. - 

Кваліфікаційна наукова праця на правах рукопису. 

Дисертація на здобуття ступеня доктора філософії за спеціальністю 122 - 

Комп’ютерні науки. - Запорізький національний університет Міністерства освіти і 

науки України, Запоріжжя, 2025. 

Дисертаційна робота присвячена дослідженню проблеми ідентифікації стану 

бджолиного вулика за допомогою моделей нейронних мереж. Робота спрямована на 

розробку ефективних методів автоматизованого моніторингу бджолиних сімей з 

використанням сучасних технологій глибокого навчання. 

Медоносні бджоли відіграють важливу роль в екосистемі, запилюючи значну 

частину сільськогосподарських культур. Однак в останні роки спостерігається 

скорочення популяції бджіл, через що зростає необхідність у активному 

моніторингу бджолиних сімей. Традиційні методи управління вуликами значною 

мірою покладаються на візуальні огляди пасічником внутрішнього простору 

вуликів. Такий підхід є трудомістким, оскільки передбачає виймання та огляд рамок 

вулика і має пряму залежність від досвіду та навичок пасічника.  

Використання нейронних мереж з даними, отриманими з бджолиного вулику, 

має ряд переваг порівняно з традиційними методами. По-перше, нейронні мережі 

дозволяють здійснювати безперервний та об’єктивний моніторинг на основі даних, 

отриманих з різних джерел, що робить їх ефективним інструментом для визначення 

станів вулику. По-друге, вони здатні виявляти приховані залежності в даних, які 

важко помітити при візуальному огляді. Крім того, навчені нейромережеві моделі 

можуть адаптуватись до різних умов експлуатації шляхом підходу трансферного 

навчання, що є особливо актуальним у випадку застосування навчених моделей з 

різними породами бджіл та у різних географічних локаціях.  Було виділено три 

основні напрями застосування нейронних мереж для ідентифікації станів 

бджолиних сімей: аналіз візуальних, акустичних та сенсорних даних. 
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В дисертаційній роботі розроблено комплекс нейромережевих моделей для 

визначення бджіл на зображеннях, класифікації їх індивідуальних станів, а також 

для визначення загального стану вулика на основі аналізу акустичних даних та 

часових рядів з сенсорів. Для роботи з візуальними даними, було проведено аналіз 

існуючих архітектур нейронних мереж визначення об’єктів та розглянуто методи 

покращення зображень з метою покращення результатів за варіативних умов 

освітлення. Також, було запропоновано архітектури нейронних мереж для 

класифікації станів окремих бджіл на зображеннях. 

Для визначення стану бджіл на основі акустичного аналізу в роботі було 

розглянуто підходи виділення ознак STFT та MFCC та розроблено нейромережеві 

моделі для класифікації стану присутності чи відсутності матки. Було 

проаналізовано застосування навчених моделей на даних, отриманих за інших умов 

та розглянуто ефективність використання методів трансферного навчання для 

адаптації навчених моделей до нових даних. 

В дисертаційній роботі було також розглянуто використання нейронних 

мереж у поєднанні з сенсорними даними з вулика. Запропоновано підхід до 

попередньої обробки часових даних, що базується на відносних значеннях ваги та 

температури. На основі оброблених даних, розроблено моделі нейронних мереж 

для ідентифікації подій та глобальних станів у вулику. 

Для тестування розроблених підходів було проведено ідентифікацію станів 

бджолиної сім’ї на даних, отриманих з розробленої експериментальної системи. 

Результати показали ефективність підходу використання відносних даних та 

підкреслило актуальність розробки універсальних систем, що здатні функціонувати 

у різних умовах вуликів. Універсальність моделей є актуальною проблемою при 

розробці нейромережевих моделей для моніторингу бджолиних сімей. Для 

подолання цієї проблеми було запропоновано використання доменної адаптації, що 

дозволяє підвищити узагальнюючу здатність моделей на нових даних. Також, в 

роботі приділено увагу компактності запропонованих моделей та їх можливості 

застосування у середовищі спеціалізованих мікроконтролерів, що є актуальною 

проблемою в умовах обмежених обчислювальних ресурсів. 
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За результатами проведених у дисертаційній роботі досліджень було 

розроблено моделі нейронних мереж для автоматизованої ідентифікації стану 

бджолиної сім’ї на основі даних змішаного типу. Запропоновано підходи до аналізу 

візуальної акустичної та сенсорної інформації, а також методи для підвищення 

стабільності та адаптивності моделей до реальних умов експлуатації. Реалізовані 

моделі та підходи можуть бути впроваджені у практику бджільництва для раннього 

виявлення критичних станів та оптимізації управління пасіками. 

Ключові слова: машинне навчання, згорткові нейронні мережі, рекурентні 

нейронні мережі, комп'ютерний зір, ідентифікація об’єктів, акустичний аналіз, 

спектрограма, класифікація зображень, нормалізація зображень, моніторинг 

бджолиного вулика, доменна адаптація, трансферне навчання, IoT. 
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ABSTRACT 

 
 

Zhukov O. O. Neural Network Models for Identifying the State of the Bee 

Colony. – Qualifying scientific work on the rights of the manuscript. The dissertation on 

competition of a scientific degree of the Doctor of Philosophy on a specialty 122 

"Computer Science". – Zaporizhzhia National University, Zaporizhzhia, 2025 

The academic dissertation is dedicated to researching the problem of identifying 

the state of bee hives using neural network models. The work is aimed at developing 

effective methods of automated monitoring of bee colonies using modern deep learning 

technologies.  

Honeybees play an important role in the ecosystem by providing pollination for a 

significant portion of agricultural crops. However, in the recent years, bee population has 

been declining in many parts of the world, which has increased the need for active 

monitoring of bee colonies. Traditional methods of hive management heavily rely on 

visual inspections of the interior of the hives by the beekeeper. This approach is laborious, 

as it involves removing and inspecting the hive frames and is directly dependent on the 

experience and skills of the beekeeper.  

The use of neural networks with data obtained from a beehive has a number of 

advantages compared to traditional methods. Firstly, neural networks allow for 

continuous and objective monitoring based on data obtained from various sources, which 

makes them an effective tool for determining the state of the hive. Secondly, they are able 

to detect hidden dependencies in the data that are difficult to notice during visual 

inspection. In addition, trained neural network models can adapt to different operating 

conditions through a transfer learning approach, which is especially relevant in the case 

of using trained models with different bee breeds and in different geographical locations. 

Three main areas of application of neural networks for identifying the state of bee 

colonies have been identified, such as: analysis of visual, acoustic and sensory data.  

In this dissertation, a set of neural network models was developed for identifying 

bees in images, classifying their individual states, and determining the general state of the 

hive based on the analysis of acoustic data and time series from sensors. To work with 
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visual data, an analysis of existing architectures of neural networks for object detection 

was conducted and methods for image enhancement were considered in order to improve 

results under variable lighting conditions. Also, neural network architectures were 

proposed for classifying the states of individual bees in images.  

To determine the state of bees based on acoustic analysis, the paper considered the 

STFT and MFCC feature extraction approaches and developed neural network models 

for classifying the state of the presence or absence of the queen. The use of trained models 

on data obtained under different conditions was analyzed, and the effectiveness of using 

transfer learning methods to adapt trained models to new data was considered. 

The thesis also considered the use of neural networks in combination with sensor 

data from the hive. An approach to pre-processing temporal data based on relative weight 

and temperature values was proposed. Based on the processed data, neural network 

models were developed to identify events and global states in the hive.  

To test the developed approaches, the identification of the states of the bee colony 

was carried out on the data obtained from the developed experimental system, which 

showed the effectiveness of the approach of using relative data and emphasized the 

relevance of developing universal systems that are able to function in different conditions 

of hives. The versatility of models is a relevant problem in the development of neural 

network models for monitoring bee colonies. To overcome this problem, the use of 

domain adaptation was proposed, which allows to increase the generalization ability of 

models when used with new data. Also, the work paid attention to the compactness of the 

proposed models and the possibility of them being applied in the environment of 

specialized microcontrollers, which is a relevant problem in conditions of limited 

computing resources.  

Based on the results of the research conducted in the dissertation, neural network 

models were developed for automated identification of the state of a bee colony based on 

mixed-type data. Approaches to the analysis of visual, acoustic and sensory information 

were proposed, as well as methods for increasing the stability and adaptability of models 

to real operating conditions. The implemented models and approaches can be introduced 
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into beekeeping practice for early detection of critical conditions and optimization of 

apiary management. 

Keywords: machine learning, convolutional neural networks, recurrent neural 

networks, computer vision, object identification, acoustic analysis, spectrogram, image 

classification, image normalization, bee hive monitoring, domain adaptation, transfer 

learning, IoT. 
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CNN – з англ. convolutional neural network, згорткова нейронна мережа 
LSTM – з англ. Long-Short Time Memory,  
DNN – з англ. deep neural network, глибока нейронна мережа 
HE – з англ. Histogram Equalization, вирівнювання гістограми 
CLAHE – з англ. Contrast Limited Adaptive Histogram Equalization, адаптивне 
вирівнювання гістограми з обмеженим контрастом 
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ВСТУП 

 
 

Актуальність теми. Скорочення популяції бджіл, що спостерігається в 
останні десятиліття, становить серйозну загрозу для екосистеми та продовольчої 
безпеки. Медоносні бджоли відіграють важливу роль в екосистемі, запилюючи 
близько третини світових сільськогосподарських культур. [1] 

Традиційні методи контролю здебільшого покладаються на візуальний огляд 
вуликів пасічником та мають суттєві обмеження. Такі методи є трудомісткими, 
суб’єктивними, та сильно залежать від досвіду та навичок бджоляра. У цьому 
контексті набуває популярності застосування технологій на основі машинного 
навчання та нейронних мереж. Застосування нейронних мереж для моніторингу 
бджолиного вулика може дозволити проводити моніторинг стану бджолиної сім’ї 
без необхідності прямого втручання бджоляра. 

Останніми роками, зріст уваги до теми використання нейронних мереж для 
моніторингу вулику також супроводжувався збільшенням наукових публікацій на 
цю тему. Авторами цих робіт було розглянуто використання нейронних мереж для 
виявлення паразитів [2,3], класифікації стану бджолиної сім’ї на основі аудіо даних 
[4–8] та даних з сенсорів [9–11]. Також, дослідниками було приділено увагу 
використанню підходів комп’ютерного зору та нейронних мереж для визначення 
станів бджіл [12–15]. 

Незважаючи на широкий об’єм робіт в напрямку використання нейронних 
мереж у бджільництві, серед них не вистачає досліджень, спрямованих на 
комплексний підхід до ідентифікації станів, що включає використання даних 
змішаного типу.  

Зв’язок роботи з науковими програмами, планами, темами. Дослідження, 
результати яких викладено в дисертації, виконано під час виконання окремих 
розділів науково-дослідної роботи, в яких автор був виконавцем та розробляв 
нейромережеві архітектури моделей глибокого навчання і виконував їх опис, які 
були використані у дисертаційному дослідженні. 

Мета і задачі дослідження. Об’єкт дослідження – процес моніторингу та 
ідентифікації станів бджолиної сім’ї. 

Предмет дослідження – методи обробки даних та нейромережеві моделі для 
розпізнавання стану бджолиної сім’ї. 

Метою дисертаційного дослідження є розробка моделей нейронних мереж та 
методів обробки даних для автоматизованої ідентифікації станів бджолиної сім’ї. 

Для досягнення поставленої мети необхідно вирішити такі завдання: 
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1) аналітичний огляд сучасного стану проблеми моніторингу бджіл та 

обмежень традиційних методів; обґрунтування доцільності застосування 
нейронних мереж для визначення стану бджолиної сім’ї; 

2) дослідити та розробити архітектури згорткових нейронних мереж для 
задач візуального моніторингу: виявлення бджіл на зображеннях та класифікації 
індивідуальних фізіологічних станів; 

3) створити моделі класифікації станів на основі акустичних даних, 
оглянути можливості їх використання на нових даних; 

4) розробити методи обробки часових даних та імплементувати їх у моделі 
класифікації станів та подій у вулику; 

5) експериментально дослідити роботу навчених моделей. 

Методи дослідження. Для вирішення поставлених задач використовуються 
методи цифрової обробки аудіосигналів, методи цифрової обробки зображень, 
методи обробки числових рядів. Для розробки моделей розпізнавання та 
класифікації використано методи теорії нейронних мереж. 

Наукова новизна дисертаційного дослідження полягає в одержані 
наступних наукових результатів: 

1) вперше запропоновано використання адаптивного підходу на основі 
доменної адаптації для аудіосигналів вулика, що дозволило досягти прийнятної 
точності при донавчанні на значно меншій кількості даних з перспективою 
підвищення узагальнювальної здатності моделей; 

2) вперше запропоновано використання методу попередньої обробки 
даних часових рядів шляхом використання відносних значень даних із сенсорів, 
розміщених у вулику; 

3) вперше реалізовано моделі нейронних мереж ідентифікації подій та 
станів на основі часових рядів, що забезпечили високу точність визначення як 
короткочасних, так і тривалих станів. 

4) отримали подальшого розвитку використання методів нормалізації 
зображень для підвищення стабільності результатів ідентифікації об’єктів.  

5) отримали подальшого розвитку моделі нейронних мереж класифікації 
стану бджіл на зображенні, що забезпечують високу точність та компактний розмір 
моделі. 

Практичне значення отриманих результатів. Створено технологічну 
основу для розробки автоматизованих систем моніторингу бджолиних вуликів, які 
можуть функціонувати в умовах обмежених обчислювальних ресурсів та 
забезпечувати неінвазивний контроль стану бджолиних сімей. Розроблено 
експериментальну систему моніторингу, що підтвердила ефективність 
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запропонованих підходів. Розроблений метод попередньої обробки даних дозволяє 
створювати узагальнені моделі ідентифікації стану вулика.  

  
Апробація матеріалів дисертації. Основні результати дисертаційного 

дослідження доповідались та обговорювались на міжнародних науково-практичних 
конференціях та семінарах: 

1) П’ята Всеукраїнська науково-практична конференція Перспективні 
напрямки сучасної електроніки, інформаційних і комп'ютерних систем (Дніпро, 
2020); 

2) Дванадцята Всеукраїнська, дев’ятнадцята регіональна наукова 
конференція молодих дослідників «Актуальні проблеми математики та 
інформатики» (Запоріжжя, 2021 р.); 

3) Тринадцята Всеукраїнська, двадцята регіональна наукова конференція 
молодих дослідників «Актуальні проблеми математики та інформатики»  
(Запоріжжя, 2022 р.); 

4) Чотирнадцята Всеукраїнська, двадцять перша регіональна наукова  
конференція молодих дослідників «Актуальні проблеми математики та  
інформатики» (Запоріжжя, 2023 р.); 

5) Міжнародна науково-технічна конференція «Інформаційні технології в 
металургії та машинобудуванні» (Дніпро, 2023 р.) 

6) Міжнародна конференція з інформаційних та цифрових технологій 
(IDT) (Зіліна, Словакія, 2023 р.) 

7) Міжнародна науково-технічна конференція «Інформаційні технології в 
металургії та машинобудуванні» (Дніпро, 2024 р.) 

8) Міжнародна науково-технічна конференція «Інформаційні технології в 
металургії та машинобудуванні» (Дніпро, 2025 р.) 

 
Публікації. Основні результати дисертації опубліковані у 13 наукових 

працях, серед яких 4 статті – у фахових виданнях України, та 1 стаття входить до 
міжнародної наукометричної бази Scopus. 

Структура та обсяг дисертації. Дисертаційна робота складається з анотації, 
змісту, переліку умовних скорочень, вступу, чотирьох розділів, висновків, списку 
використаних джерел із 123 найменувань на 17 сторінках і 1 додатку. Загальний 
обсяг дисертаційної роботи становить 138 сторінок друкованого тексту, із них 110 
сторінок основного тексту. Дисертація містить 24 рисунки та 19 таблиць. 
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 РОЗДІЛ 1  

АНАЛІЗ СТАНУ ПРОБЛЕМИ ВИКОРИСТАННЯ НЕЙРОННИХ МЕРЕЖ 

ДЛЯ ІДЕНТИФІКАЦІЇ СТАНУ БДЖОЛИНОЇ СІМ’Ї 

 
 

1.1 Актуальність моніторингу бджіл 

 

Роль медоносних бджіл у підтримці екосистем і продовольчої безпеки є 

надзвичайно важливою. За оцінками дослідників, бджоли запилюють близько 

третини світових харчових продуктів, забезпечуючи послуги запилення вартістю 

сотні мільярдів доларів щорічно [1]. Разом з тим, в останнє десятиліття 

спостерігається тривожне зниження кількості бджолиних сімей. Така тенденція 

викликає серйозні ризики для сільського господарства та природних екосистем, 

адже медоносні бджоли є одними з найпродуктивніших запилювачів і сприяють 

репродукції більшості культур [16]. Зменшення популяцій бджіл прямо загрожує 

світовій продовольчій безпеці та біорізноманіттю [17]. Причини скорочення 

бджолиних сімей мають комплексний характер – від впливу пестицидів і 

поширення паразитів, до змін клімату, хвороб та синдрому руйнування колоній 

(Colony Collapse Disorder, CCD) [18–20].  

Упродовж багатьох років, для оцінки стану бджолиних сімей бджолярі мали 

можливість покладатися лише на свій досвід і власні спостереження. Під такими 

традиційними методами маються на увазі наступні: візуальний огляд рамок під час 

періодичних інспекцій вулика [21], оцінку льотної активності бджіл біля льотка, 

аналіз розплоду (кількість, структура, наявність яєць) та оцінку запасів меду і 

пилку. Візуальний огляд рамок дає змогу оцінити загальну силу сім'ї (кількість 

бджіл, які покривають рамки), поведінку (спокійна або агресивна), наявність та 

стан матки (за допомогою безпосереднього спостереження або за наявністю 

свіжого розплоду), а також дозволяє виявити видимі ознаки захворювань чи 

шкідників. Спостереження за льотною активністю може надати інформацію про 

інтенсивність медозбору, наявність проблем з орієнтацією або потенційні ознаки 
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підготовки до роїння [22]. Аналіз розплоду є ключовим показником здоров'я та 

плідності матки, а також загального стану сім'ї. Оцінка запасів корму (меду та 

перги) дозволяє вчасно виявити ризик голодування та вжити необхідних заходів, 

особливо в періоди слабкого медозбору або під час зимівлі [23–25].  

Однак, традиційні методи мають суттєві обмеження. По-перше, вони є 

значною мірою суб'єктивними, оскільки оцінка залежить від досвіду та кваліфікації 

бджоляра. По-друге, вони є трудомісткими та вимагають значних часових затрат, 

особливо на великих пасіках [1]. По-третє, фізичне відкриття вулика та огляд рамок 

є інвазивною процедурою. Ця інвазивність несе в собі приховані витрати: вона 

порушує мікроклімат вулика, викликає стрес у бджіл, може призвести до 

випадкової загибелі матки та підвищує ризик поширення захворювань між 

вуликами [26,27]. Більше того, такі огляди проводяться періодично, що не дозволяє 

отримати безперервну інформацію про динаміку стану вулика та може призвести 

до пропуску критичних подій або запізнілого виявлення проблем [27]. Саме 

прагнення мінімізувати ці негативні наслідки втручання, поряд з потребою в 

безперервних даних для раннього попередження, є потужним стимулом для 

розробки та впровадження альтернативних, неінвазивних та автоматизованих 

методів моніторингу. 

Сучасний вулик являє собою певну інженерну конструкцію, розроблену з 

урахуванням біологічних потреб бджолиної сім'ї та зручності обслуговування. 

Оскільки вулик повинен забезпечувати комфортні умови існування бджолиної сім’ї, 

він має бути просторим, теплим влітку, з хорошою вентиляцією влітку та 

дотримуватись стандартних розмірів між рамками [28].  

Існують три основних види вуликів, а саме: вертикальні (стояки), 

горизонтальні (лежаки) та багатокорпусні вулики. Приклад структури 

вертикального бджолиного вулика наведено на рисунку 1.1 
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Рисунок 1.1 Структура бджолиного вулика [29] 

 

Основними структурними елементами є донна частина, корпус та дах. Донна 

частина обладнана льотком – спеціальним отвором для входу та виходу бджіл, а 

також вентиляційною системою. Корпус вулика розділений на гніздову та 

магазинну частини, де розміщуються рамки зі стільниками [22,28]. 

Найбільше поширення в Україні мають вулики-лежаки, кількість яких 

оцінюється у 80% від загальної кількості. Головна перевага українських вуликів-

лежаків це доступ до всього гнізда без необхідності повного відкривання та 

зручність догляду в холодну погоду [24]. 

Бджолина сім'я представляє собою унікальну біологічну одиницю з чіткою 

організаційною структурою. Ця структура включає бджолину матку, трутнів та 

робочих бджіл. Чисельність сім'ї коливається від 20 до 60 тисяч особин залежно від 

сезону, включаючи різновіковий розплід. Важливо зазначити, що окрема бджола не 

здатна до тривалого самостійного існування поза межами колонії [28]. 

Кожна бджолина сім'я має індивідуальні властивості, які зберігаються доки в 

ній живе одна й та сама матка. Ці властивості проявляються у специфічному запаху, 
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продуктивності на медозборі, темпах розвитку, зимостійкості, восковій 

продуктивності, схильності до роїння, стійкості до хвороб та рівні агресивності. 

Єдність колонії забезпечується складною системою взаємозв'язків між її членами 

через трофічні та тактильні контакти, обмін феромонами, сигнальні звуки та рухи. 

Завдяки постійному народженню нових особин на заміну тим, що відмирають, 

бджолина сім'я як цілісний організм здатна функціонувати практично необмежено 

довго, що підкреслює її унікальну біологічну природу та важливість для 

селекційної роботи [22,24]. Приклад вигляду особин бджолиної сім'ї наведено на 

рисунку 1.2. 

 

 
Рисунок 1.2 Три особини бджолиної сім’ї [28] 

 

Бджолина матка є центральною особиною бджолиної сім'ї з унікальними 

характеристиками та функціями. Вона вирізняється серед інших членів колонії 

видовженим тілом із черевцем, що виходить за кінчики крил, більшими розмірами 

та масою. У природних умовах матка може жити до п'яти-шести років, проте її 

репродуктивна ефективність знижується після двох років, тому в промисловому 

бджільництві старших маток регулярно замінюють молодшими. Матка рідко 

покидає вулик, роблячи це лише для парування з трутнями або під час роїння для 

створення нової колонії. Особливе значення має здатність матки виділяти 

специфічний феромон, який слугує ідентифікатором для бджіл, допомагаючи їм 

розпізнавати членів своєї сім'ї та підтримувати впорядковану діяльність колонії. 

Зниження концентрації цього феромону сигналізує про проблеми з маткою або її 

відсутність, що потребує втручання. Бджолині матки бувають кількох типів: ройові 
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(виведені під час роїння з великою кількістю маточників), самозамінні (коли 

бджоли самостійно замінюють стару матку), свищеві (виведені за надзвичайних 

обставин після втрати матки) та штучно виведені. Якість матки, особливо її маса та 

кількість яйцевих трубочок, безпосередньо впливає на життєздатність і 

продуктивність усієї колонії, визначаючи її успішність і здоров'я [22,24,28]. 

Бджолина матка є центральним об’єктом багатьох досліджень, спрямованих на 

моніторинг бджолиної сім’ї з застосуванням нейронних мереж. Існуючі 

дослідження показують, що аналізуючи звукові сигнали та бджолиної матки можна 

спрогнозувати підготовку до роїння [30], або відсутність матки [7]. 

Основою функціонування бджолиної сім’ї та її найчисельнішою складовою є 

робочі бджоли.  Вони являються особинами жіночої статі з недорозвиненими 

статевими органами, через що зазвичай нездатні відкладати яйця [24,28]. 

Функціональна активність робочих бджіл характеризується віковою 

диференціацією. Молоді особини виконують внутрішньогніздові функції: обробку 

комірок, годівлю личинок та терморегуляцію розплоду. У міру старіння 

функціональна спеціалізація змінюється: вони беруть участь у виготовленні та 

консервуванні кормів, будівництві стільників, захисті гнізда від шкідників і 

сторонніх бджіл, а згодом виконують обов’язки збирачів нектару, пилку, води й 

прополісу [23]. Крім того, робочі бджоли відповідають за підтримання стабільного 

мікроклімату у вулику, зокрема температури та вологості, і можуть здійснювати 

примусову вентиляцію [24]. 

Примітною властивістю робочих бджіл є їхня здатність за відсутності матки 

перетворюватися на бджіл-трутівок. У таких випадках молоді бджоли починають 

годувати одна одну маточним молочком, внаслідок чого набувають здатності 

відкладати незапліднені яйця, з яких розвиваються лише трутні. Розрізняють 

анатомічних трутівок, що мають краще розвинені статеві органи, але не 

відкладають яйця, та фізіологічних, здатних до яйцекладки. Сім'я з трутівками без 

матки приречена на вимирання через неможливість поповнення робочими 

бджолами та потребує негайного втручання бджоляра [22]. У системах моніторингу 

бджолиної сім’ї, що базуються на нейронних мережах, робочі бджоли виступають 
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об’єктом спостереження, оскільки їхня поведінка, кількість, акустичні сигнали та 

активність є основними ознаками для класифікації станів вулика [7,31,32]. 

Трутні становлять важливу, хоча й нечисленну частину бджолиної спільноти. 

Ці чоловічі особини з'являються в сім'ї навесні та влітку (переважно у травні-

червні) і мають єдине біологічне призначення – запліднення молодих неплідних 

маток [24]. Фізіологічні особливості трутнів досить характерні: вони мають 

коротке, товсте тіло з крилами, що виходять за межі черевця [22]. 

На відміну від робочих бджіл, трутні не пристосовані до виконання жодних 

робіт у вулику. Вони не можуть збирати нектар через укорочений хобіток, а отже, 

живляться виключно готовим кормом із сот або отримують його від робочих бджіл. 

Відсутність жала унеможливлює їхній захист від потенційних ворогів. Варто 

зазначити, що утримання трутнів потребує значних ресурсів: кожна тисяча трутнів 

споживає приблизно 7 кг меду впродовж життя [22]. 

Процес запліднення маток відбувається у повітрі, що забезпечує природний 

відбір найсильніших самців. З усієї популяції трутнів лише незначна частина бере 

участь у паруванні, оскільки матка спаровується з 10–15 трутнями, після чого вони 

гинуть. Трутні, які не зустрілися з матками, повертаються до вулика, де робочі 

бджоли продовжують доглядати за ними до завершення сезону медозбору [22]. 

Із закінченням сезону медозбору робочі бджоли зазвичай виганяють трутнів 

із гнізд, не вбиваючи їх, а просто не допускаючи до гнізда та їжі. Однак у деяких 

випадках, зокрема коли сім'я залишається без матки або має неплідну матку, трутні 

можуть залишатися у гнізді на зиму. Така складна взаємодія між маткою, робочими 

бджолами та трутнями підтверджує, що бджолина сім'я функціонує як єдина 

біологічна одиниця, де жоден член спільноти не здатний існувати самостійно 

[22,28]. 

Бджолина сім'я існує в динамічних станах, які визначаються сукупністю 

внутрішніх факторів (стан матки, розмір та вікова структура популяції, генетичні 

особливості) та зовнішніх впливів (стан навколишнього середовища, доступність 

кормових ресурсів, наявність шкідників та патогенів, практики бджільництва). 
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• Здоровий стан бджолиного вулика характеризується оптимальним 

балансом між різними категоріями бджіл, активним розплодом, достатніми 

запасами меду та перги, а також нормальною поведінкою робочих бджіл [28]. У 

здоровому вулику спостерігається регулярний патерн вильотів робочих бджіл для 

збору нектару та пилку, активне будівництво та підтримання стільників, а також 

стабільний мікроклімат з температурою в зоні розплоду близько 34-35°C [24]. Точне 

визначення норми для конкретного вулика є важливим завданням, оскільки 

характеристики здорового стану можуть варіюватися залежно від породи бджіл, 

географічного розташування, сезону та інших факторів. 

• Роїння представляє собою природний механізм розмноження 

бджолиних сімей, під час якого відбувається поділ однієї колонії на декілька 

менших, здатних до самостійного існування. Цей біологічний процес зазвичай 

виникає наприкінці травня - на початку червня після весняного нарощування 

молодих особин. Основною передумовою роїння є перенаселення вулика, коли 

зростаюча кількість робочих бджіл призводить до тісноти, обмежує простір для 

зберігання корму та відкладання яєць маткою. У таких умовах бджоли починають 

будувати спеціальні ройові маточники для виведення нових маток. Традиційні 

методи ідентифікації підготовки до роїння включають в себе огляд вулика на 

наявність ройових маточників. Процес роїння характеризується тим, що стара 

матка залишає вулик разом із частиною льотних бджіл, формуючи перший рій, який 

називають перваком. Залежно від сили материнської сім'ї, може утворюватися 

кілька послідовних роїв – вторак, третяк тощо. Вилетівши з вулика, рій зазвичай 

тимчасово осідає неподалік на дереві чи кущі, формуючи характерне скупчення 

навколо матки. У разі вчасного реагування, пасічник може відловити та перемістити 

рій до нового вулика, таким чином запобігаючи втраті бджіл [33]. З господарської 

точки зору роїння зазвичай розглядається як небажане явище, оскільки негативно 

впливає на продуктивність пасіки, збільшує трудовитрати та порушує 

планомірність робіт. Тому досвідчені бджолярі застосовують різноманітні методи 

для попередження ройового стану: регулярний огляд вулика пасічником на 
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наявність ройових маточників та забезпечення бджолиної сімʼї достатнім 

простором [22,33]. 

• Варооз, викликаний кліщем Varroa destructor, є одним із 

найнебезпечніших захворювань медоносних бджіл у світовому масштабі. Особливо 

загрозливим варооз робить здатність кліщів переносити патогенні мікроорганізми, 

спричиняючи такі захворювання як септицемія, вірусний параліч, гнильці та інші 

небезпечні інфекції. Рівень інвазії має сезонний характер: навесні закліщеність 

бджіл відносно невисока, але суттєво зростає восени. Влітку найбільше вражається 

трутневий розплід, а в інші сезони - бджолиний. Клінічно варооз проявляється 

ослабленням сімей, підвищеною нервозністю, аномальним шумом і втратою 

дорослих бджіл. Без належного лікування уражені сім'ї гинуть. При огляді кліщів 

можна побачити неозброєним оком на тілі бджіл, а в сильно уражених сім'ях загиблі 

паразити осипаються на дно вулика [19,22]. Однак, простий огляд вулика часто 

дозволяє виявити проблему вже на пізніх стадіях, коли кліща багато [3]. Бджолярі 

використовують різні методи боротьби з вароозом, включаючи хімічні обробки, 

механічні втручання та інтегровані системи управління. Проте наразі не існує 

методу, який був би одночасно ефективним, безпечним та екологічним. Адекватний 

контроль вароозу є ключовим для зменшення зимових втрат бджолиних сімей, що 

підкреслює необхідність кращого розуміння механізмів дії та наслідків різних 

методів боротьби з цим небезпечним паразитом [33,34]. 

• Зникнення матки є критичним станом бджолиного вулика, що може 

виникнути внаслідок смерті матки, її виходу з вулика під час роїння без успішного 

повернення, або невдалої заміни матки пасічником. Відсутність матки протягом 

тривалого часу призводить до порушення нормального функціонування бджолиної 

сім'ї та, без втручання, до її поступового вимирання [22]. Без матки бджолина сім'я 

може існувати обмежений період часу, що зазвичай не перевищує тривалість життя 

робочих бджіл. Якщо у вулику залишаються яйця або молоді личинки, робочі 

бджоли можуть вивести нову матку з аварійного маточника, однак успішність цього 

процесу залежить від багатьох факторів, включаючи якість личинки, наявність 

трутнів для запліднення та сезонні умови [35]. Існуючі роботи вказують на 
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доцільність використання нейронних мереж для аналізу аудіоданих з вулика для 

ідентифікації зникнення матки [7,32]. 

• На відміну від тимчасового зникнення матки, її смерть є незворотною 

подією, що вимагає негайного втручання пасічника для заміни матки або 

об'єднання безматочної сім'ї з іншою [33]. Рання ідентифікація зникнення матки є 

важливим завданням моніторингу бджолиних вуликів, оскільки дозволяє пасічнику 

вчасно втрутитися та вирішити проблему. Традиційні методи ідентифікації 

зникнення чи смерті матки можуть включати в себе огляд рамок на предмет 

відсутності засіву, або наявності великої кількості трутівок чи мертвої матки. 

Досвідчений пасічник також може помітити зміни в поведінці бджіл та звуковому 

фоні, які можуть виражатись різними методами в залежності від сезону [33]. 

• Кліматичні проблеми у бджолиному вулику виникають, коли умови 

навколишнього середовища виходять за межі оптимального діапазону для 

життєдіяльності бджолиної сім'ї, або коли бджоли не можуть ефективно регулювати 

мікроклімат всередині вулика. Ці проблеми можуть включати перегрів, 

переохолодження, надмірну вологість або недостатню вентиляцію. Перегрів вулика 

може спричинити деформацію стільників, загибель личинок та лялечок, а також 

спровокувати аварійне роїння як механізм порятунку колонії. Переохолодження 

може призвести до загибелі розплоду, уповільнення розвитку личинок та 

підвищення їх сприйнятливості до патогенів. У холодний період року бджоли 

формують зимовий клуб для збереження тепла, і якщо температура всередині клубу 

знижується нижче критичного рівня, це може призвести до загибелі всієї колонії 

[36]. Надмірна вологість сприяє розвитку патогенних мікроорганізмів, зокрема, 

грибкових інфекцій [22]. 

• Смерть бджолиної сім'ї (колапс) є кінцевим результатом дії 

різноманітних негативних факторів, таких як тривала відсутність матки, сильна 

інвазія паразитів, інфекційні захворювання, отруєння пестицидами, екстремальні 

кліматичні умови або недостатні запаси їжі. Цей стан характеризується повною або 

майже повною загибеллю всіх бджіл у вулику [18]. Ознаки наближення колапсу 

включають різке зменшення кількості робочих бджіл, зниження активності 
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вильотів, аномальну поведінку бджіл (дезорієнтація, нездатність повернутися до 

вулика), наявність мертвих бджіл всередині або перед вуликом та специфічні зміни 

в акустичному профілі [37]. Рання ідентифікація ознак, що передують колапсу, є 

критично важливою для запобігання втрат бджолиних сімей. 

Нейромережеві моделі, що аналізують комплексні дані моніторингу вулика 

(акустичні, візуальні, температурні, вагові), можуть виявляти тонкі зміни у 

функціонуванні бджолиної сім'ї задовго до появи очевидних ознак проблеми, 

дозволяючи пасічнику вчасно втрутитися та вжити необхідних заходів. 

 

1.2 Сенсорні технології для моніторингу стану бджіл 

 

З розвитком електроніки та технологій IoT з’явилася можливість оснащувати 

вулики різноманітними сенсорами, що цілодобово фіксують ключові параметри 

всередині і навколо бджолиної сім’ї. Такі «розумні» вулики збирають об’єктивні 

дані про стан колонії без втручання людини [27]. Основні типи датчиків і 

показників, що застосовуються в сучасних системах моніторингу бджолиних сімей, 

включають наступні: 

• Моніторинг ваги вулика є одним з найдавніших та найпоширеніших 

методів дистанційного спостереження. Він здійснюється шляхом встановлення 

вулика на спеціальні тензодатчики. Ваги безперервно або з високою періодичністю 

реєструють загальну вагу вулика та її зміни [38]. Незважаючи на свою 

інформативність та відносну простоту концепції, зовнішні фактори можуть мати 

суттєвий вплив на точність вимірювань ваги. Сильний вітер, дощ або сніг, що 

накопичується на даху вулика, можуть призводити до хибних показників ваги [39]. 

Нерівномірне розміщення вулика на платформі або її просідання також можуть 

впливати на точність [40]. Крім того, температурні коливання можуть впливати на 

характеристики самих тензодатчиків, вимагаючи відповідної компенсації або 

калібрування. 
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• Температурні датчики є ще одним ключовим компонентом систем 

моніторингу. Їх розміщують всередині вулика, часто в кількох точках. 

Розташування датчиків має вирішальне значення: центральні датчики, ближче до 

розплідної зони, тісніше корелюють зі станом та силою сім'ї, ніж периферичні. 

Також температурні датчики можуть розміщуватись зовні вулику для отримання 

ширшого діапазону даних [41].  

• Датчики вологості часто інтегруються разом з температурними 

датчиками, оскільки ці два параметри тісно пов'язані і разом визначають 

мікроклімат гнізда [42]. 

• Акустичний моніторинг бджолиних вуликів став важливим 

інструментом у дослідженні поведінки та стану колоній. Бджоли використовують 

звукові та вібраційні сигнали для комунікації всередині колонії, а загальний 

звуковий фон вулика відображає рівень активності та фізіологічний стан сім'ї [8,43]. 

Для реєстрації цих сигналів використовуються акустичні сенсори – зазвичай 

мініатюрні мікрофони, розміщені всередині вулика, часто під кришкою або біля 

льотка [44]. Однією з головних проблем акустичного моніторингу є висока 

чутливість до зовнішніх шумів. Звуки від дощу, вітру, транспорту, людської 

діяльності, інших тварин можуть змішуватися з корисним сигналом від бджіл, 

ускладнюючи його аналіз [6]. 

• Системи відеоспостереження використовують камери, встановлені, як 

правило, біля льотка вулика, а іноді й усередині гнізда, для візуальної реєстрації 

активності бджіл [15]. Розміщення апаратури для відеофіксації всередині вулика є 

складною задачею, адже просто розмістити звичайну компактну камеру всередині 

вулика не має практичного сенсу через відсутність світла. На доцільність 

розміщення камер всередині вулика також впливає обмежена зона покриття однією 

камерою через тісний простір між рамок та щільність бджіл у вулику, обмеження у 

можливій відстані від бджіл на яку можна встановити камеру, що може бути 

меншою за мінімально можливу фокусну відстань об’єктиву [45]. Хоча обробка 

відео потребує багато обчислювальних ресурсів, вона дає цінну інформацію, яку 

важко отримати іншими методами. 
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1.3 Можливості застосування нейронних мереж у моніторингу стану 

бджолиних сімей 

 

Обробка даних, що надходять від численних сенсорів у вулику, для 

визначення стану бджолиної сім’ї являє собою складне завдання. Сучасні 

дослідження свідчать, що алгоритми машинного навчання можуть суттєво 

підвищити якість оцінки стану вулика, автоматично розпізнаючи складні патерни у 

великих масивах даних. 

Нейронні мережі є підгалуззю машинного навчання, що використовує штучні 

нейрони для автоматичного навчання на основі вхідних даних. Особливістю 

нейронних мереж є їх здатність моделювати складні взаємозв’язки, виявляти 

закономірності та розпізнавати особливості, які не можна ефективно 

ідентифікувати за допомогою традиційних статистичних методів. На практиці, 

багато сучасних підходів спираються на глибокі нейронні мережі, які 

характеризуються наявністю прихованих шарів, що дозволяє їм вивчати ієрархічні 

представлення даних та виявляти більш абстрактні та складні ознаки [46]. Дані, 

отримані під час моніторингу вулика, характеризуються значною варіативністю та 

неочевидними залежностями, що зумовлює актуальність застосування нейронних 

мереж для їх аналізу. Впровадження інтелектуальних систем на основі нейронних 

мереж дозволяє здійснювати безперервний та об'єктивний аналіз великих обсягів 

даних, сприяючи прийняттю обґрунтованих рішень та підвищенню загальної 

стійкості бджільницьких господарств. 

Широке практичне застосування у сфері моніторингу бджолиних сімей 

знайшли згорткові нейронні мережі (CNN). Ця архітектура використовує шари 

згортки, які застосовують спеціальні фільтри для виділення просторових ієрархій 

ознак з вхідних даних. Такий підхід робить архітектуру CNN ефективним 

інструментом для обробки даних з сітковою топологією, наприклад, зображень [47]. 

В контексті бджільництва це відкриває можливості для автоматичного аналізу 

фотографій та відеоматеріалів з вулика. Складніші архітектури згорткових 
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нейронних мереж включають в себе вдосконалені механізми для точної локалізації 

та класифікації об’єктів на зображеннях [46]. Окрім візуальних даних, згорткові 

мережі демонструють ефективність в аналізі аудіоданих, зокрема, шляхом обробки 

спектрограм звуків з вулика, що є ефективним інструментом в ідентифікації ряду 

станів [6]. 

Іншим класом нейронних мереж, що активно застосовується для аналізу 

вулика є рекурентні нейронні мережі (RNN). На відміну від згорткових нейронних 

мереж, які переважно оброблюють просторові дані, RNN спеціалізуються на аналізі 

послідовностей, де важливий порядок елементів [48]. Це робить їх ефективним 

інструментом для роботи з часовими рядами, що включають температурні дані, дані 

про вагу та інші, що записуються протягом тривалого часу. Архітектурно 

рекурентні нейронні мережі мають зворотні зв’язки, що дозволяє мережі зберігати 

інформацію про попередні стани та використовувати її для обробки поточних 

вхідних даних [46]. Однією з поширених областей застосування рекурентних мереж 

у моніторингу бджолиних сімей є прогнозування ключових параметрів 

життєдіяльності колонії та її станів. Наприклад, на основі часових рядів показників 

мікроклімату та ваги вулика, рекурентні нейронні мережі можуть прогнозувати 

зростання ваги під час медозбору, ймовірність роїння, або відсутність матки 

[7,10,49,50]. 

Застосування нейронні мереж у бджільництві охоплює широкий спектр 

завдань, спрямованих на підвищення ефективності та стійкості галузі. До них 

належать: моніторинг здоров’я та поведінки бджіл, управління пасікою, контроль 

мікроклімату у вуликах, а також прогнозування продуктивності. Через велику 

варіативність та різнорідність даних з вулика, вибір вірних архітектур для 

конкретних задач, оптимізація  вхідних даних та методів навчання моделей є 

важливими кроками. Важливим аспектом є також розробка моделей, здатних 

працювати в умовах обмежених обчислювальних ресурсів, наприклад, 

безпосередньо на пристроях, встановлених у вуликах, для забезпечення 

автономності та оперативності моніторингу [30]. 
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1.4 Нейромережеві методи та засоби ідентифікації стану бджолиних 

сімей 

 

Поєднання потоків даних з різних типів датчиків з алгоритмами машинного 

навчання та нейронними мережами дозволяє здійснювати комплексний аналіз 

функціонального стану бджолиних сімей та вчасно визначати проблеми. Наукові 

дослідження показують високу ефективність використання аналітичних алгоритмів 

для розрізнення особливих станів бджолиних колоній на основі комбінованого 

аналізу даних з датчиків [27,51].  

Оцінка загального "здоров'я" бджолиної сім'ї є комплексною задачею, 

оскільки здоровий стан характеризується сукупністю багатьох позитивних ознак. 

Надійну оцінку неможливо зробити на основі даних лише одного сенсора. Тому 

така оцінка потребує інтеграції різноманітних параметрів, які характеризують 

нормальне функціонування бджолиної сім'ї. Визначення базових показників 

здорового стану для конкретного вулика є важливим кроком для подальшого 

виявлення відхилень та потенційних проблем. 

Існуючі дослідження показали ефективність використання відеоданих, 

технологій комп’ютерного зору, та глибоких нейронних мереж для аналізу 

активності бджіл [52], ідентифікації пилку [14] та кліща Varroa destructor [53] на 

бджолах, а також класифікації стільників [54]. Ці дані є важливими для подальшої 

оцінки вулика, адже бджолина сім'я демонструє характерні добові та сезонні 

патерни вильотів робочих бджіл, що корелюють з погодними умовами. Також, 

важливими візуальними характеристиками здорового стану сім’ї є рівномірний 

розплід без пропусків на стільниках та відсутність (або мінімальна кількість) 

паразитів на бджолах [23]. 

Інші дослідження показали що використання даних про вагу вулика дозволяє 

отримати інформацію про нормальну динаміку, де влітку для сім'ї характерний 

добовий патерн зміни ваги: зниження вдень та підвищення вночі, та поступове 

зниження ваги вулика взимку [38]. 
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Також дослідження показали можливість ідентифікації характерної для 

здорової сім’ї динаміки температури та вологості. Такі зміни влітку повʼязані з 

виходом бджіл за пилком. 

Хоч в області акустичного аналізу вуликів більшість уваги приділено 

ідентифікації таких станів як відсутність матки або підготовка до роїння, можна 

припустити що відсутність цих виражених характеристик показує звичайну 

динаміку вулика [55]. 

Контроль наявності матки є критично важливим аспектом моніторингу 

бджолиних вуликів, оскільки матка є центральним елементом бджолиної сім'ї, що 

забезпечує її репродуктивну функцію та соціальну організацію. Відсутність або 

низька якість матки може призвести до поступового занепаду колонії, тому 

своєчасне виявлення проблем з маткою дозволяє пасічнику вчасно втрутитися та 

вирішити проблему [56]. Через суттєві складнощі виявлення супутніх 

характеристик відсутності матки, більшість наукових досліджень в цьому напрямку 

спрямовані на використання аудіоданих. Існуючі дослідження Ruvinga S. та ін. 

показали ефективність використання нейронних мереж для ідентифікації 

присутності або відсутності матки у вулику шляхом перетворення аудіоданих у 

спектрограми та мел-кепстральні коефіцієнти [7,57].  

Виявлення наявності паразитів, особливо кліща Varroa destructor, є одним з 

ключових завдань систем моніторингу бджолиних вуликів, оскільки паразитарні 

інвазії є однією з основних причин ослаблення та загибелі бджолиних сімей [34]. 

Цей стан супроводжується вираженими характеристиками та його виявлення є 

актуальною темою багатьох наукових робіт. В одному з досліджень для діагностики 

вароозу використовували зразки бджолиного розплоду, напівпровідникові газові 

сенсори, та нейронні мережі. Результати продемонстрували, що за допомогою 

використаних сенсорів та методів аналізу вдалося ефективно відрізнити розплід, 

уражений вароозом, від здорового розплоду [58]. Багато інших досліджень 

використали технології та засоби комп’ютерного зору для ідентифікації наявності 

кліща у вулику [59]. Наприклад, дослідження [2] описує використання камери для 

фотографії піддона вулика, та ідентифікацію на ньому кліщів. В іншому 
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дослідженні використовували вбудований модуль камери, розміщений у 

розплідному гнізді вулика, та алгоритми глибокого навчання для виявлення бджіл 

на зображеннях [60]. 

Роїння є однією з подій, яка відносно добре піддається визначенню за 

допомогою сенсорних систем та нейронних мереж. Цей стан супроводжується 

великою кількістю характеристик, які можуть стати основою для своєчасної 

ідентифікації стану або його передбачення. Існуючі дослідження показали успішне 

використання нейронних мереж для визначення стану роїння на аудіозаписах з 

вулику [55,61]. Дослідниками також було виявлено характерні зміни температури 

перед початком роїння, що робить цей параметр надзвичайно корисним для 

передбачення [27,62]. В роботі [49] показано ефективність використання 

архітектури LSTM та методів злиття даних (аудіо, температура) для передбачення 

роїння. Оскільки під час роїння значна кількість бджіл покидає вулик, можна 

відзначити вплив цього стану на дані про вагу [38,39]. 

Загибель бджолиної сім'ї може відбуватися через комплекс несприятливих 

факторів, включаючи хвороби, нестачу корму та пестицидні отруєння. Своєчасне 

виявлення проблем дає можливість вжити заходів для їх вирішення та запобігти 

загибелі бджолиної сім'ї. Колапс колонії супроводжується великим спектром ознак, 

які в поєднанні з нейронними мережами можна використати для ідентифікації 

загибелі колонії. Аналіз аудіоданих може виявити відсутність активності бджіл або 

її аномальні значення. Існуючі роботи показали ефективність використання 

нейронних мереж та відео даних для моніторингу активності бджіл біля льотка [52]. 

Вчасні дані про зниження льотної активності можуть допомогти запобіганню 

колапсу колонії. Використання сенсорів також може надати корисну інформацію 

для виявлення смерті колонії, адже такий стан характеризується зниженням 

динаміки ваги або її відсутністю, та еквілібріумом внутрішньої температури з 

зовнішньої. 

Таким чином, розробка та впровадження ефективних систем спостереження 

за бджолиними сім'ями на основі нейронних мереж потребує комплексного підходу. 

Хоч використання навіть поодиноких даних з сенсорів показує позитивні 
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результати в задачах ідентифікації окремих станів, застосування нейронних мереж 

та даних з різного набору методів автоматизованого моніторингу може підвищити 

точність визначення станів, або допомогти визначити їх більшу кількість. У таблиці 

1.1 наведено розглянуті стани бджолиної сім’ї та методи їх ідентифікації. 

Характеристики ваги та температури поєднані через подібність методів їх аналізу 

нейронними мережами. 

 

Таблиця 1.1 Стани бджолиної сім’ї та методи їх ідентифікації 
Стани та події Традиційні методи Характеристики Нейромережеві засоби 

Здорова сімʼя Періодичний огляд вулику аудіо - 

вага, 

температура 

часові ряди та LSTM 

візуальні 

методи 

Моделі ідентифікації 

обʼєктів, що показують 

позитивну динаміку 

бджіл. CNN, що 

показують пилкозбір [14] 

Роїння Візуальний огляд маточників, 

спостереження за 

скупченнями біля льотка 

аудіо DNN, LSTM [49], CNN [5]  

вага, 

температура 

часові ряди та LSTM 

візуальні 

методи 

SSD [63] 

Коллапс Зменшення кількості бджіл у 

вулику, виявлення мертвих 

особин на дні вулика, 

відсутність льотної 

активності, припинення 

гудіння 

аудіо CNN / LSTM для 

визначення зниження гулу 

вага, 

температура 

часові ряди та LSTM 

візуальні 

методи 

Моделі ідентифікації 

обʼєктів, що показують 

знижену чи відсутню 

динаміку бджіл 

Відсутність/загибель 

матки 

неспокійна поведінка бджіл, 

відсутність свіжого засіву 

яєць, виявлення свищових 

маточників, огляд рамок для 

аудіо LSTM [7] 

вага, 

температура 

- 

візуальні 

методи 

- 
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підтверження відсутності 

матки 

Наявність паразитів 

(Varroa destructor) 

візуальний огляд бджіл і 

розплоду, спиртовий метод 

відбору проб, підрахунок 

природного осипу кліщів та 

промивання бджіл у мильному 

розчині 

аудіо - 

візуальні 

методи 

CNN [64] 

вага, 

температура 

- 

 

Виходячи з Таблиці 1.1, нейронні мережі можуть слугувати ефективною 

альтернативою традиційним методам моніторингу стану бджолиної сім’ї. Однак, 

хоч за останні роки і спостерігається зростання числа досліджень спрямованих на 

ідентифікацію стану вуликів різноманітними засобами, не всі комбінації 

технологій, підходів, та станів досліджені у рівній мірі. Це підкреслює актуальність 

та важливість нових досліджень в цій сфері. 

 

1.5 Проблеми інтеграції сенсорів та обробки даних у реальних умовах 

 

Незважаючи на значний потенціал інтелектуальних систем моніторингу на 

основі сенсорів та нейронних мереж, їх широке практичне впровадження 

стикається з низкою суттєвих викликів, що охоплюють аспекти апаратного 

забезпечення, передачі та обробки даних, а також біологічної мінливості об'єкта 

моніторингу. 

Однією з перших перешкод є необхідність розгортання сенсорів у 

специфічному середовищі бджолиного вулика. Розміщення датчиків безпосередньо 

всередині може бути проблематичним, оскільки бджоли схильні покривати 

сторонні предмети прополісом або воском, що може спотворювати показники 

[65,66]. Це вимагає ретельного проектування корпусів датчиків, вибору 

оптимальних місць їх розташування, та використання матеріалів, менш схильних 

до прополісування. При цьому ключовою вимогою залишається мінімальна 

інвазивність системи, щоб не порушувати життєдіяльність колонії. 
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Ще одним важливим завданням є забезпечення енергопостачання для систем 

моніторингу, особливо на віддалених пасіках без прямого доступу до 

електромережі. Під час проектування необхідно враховувати енергоефективність 

компонентів, таких як мікроконтролери та датчики. Сонячні панелі в поєднанні з 

акумуляторами є поширеним та ефективним рішенням для живлення таких систем 

та використовуються в багатьох існуючих системах моніторингу, але такий метод 

створює залежність від погодних умов. Альтернативно, дослідники 

використовують додаткові батареї для забезпечення живлення системи [44]. У 

випадку використання енергоефективних компонентів та підходів, батарея може 

живити систему моніторингу тривалий час [67], але все одно вимагає втручання 

пасічника у випадку розряджання. Системи моніторингу, що одночасно 

використовують велику кількість датчиків та виконують обчислення, вимагають 

потужнішого та обʼємнішого джерела енергії щоб працювати тривалий час, тому 

важливо знайти баланс між потребою в засобах та безперервному моніторингу, та 

обмеженими енергетичними ресурсами [64]. 

Одним з методів зменшення енергонавантаження на систему моніторингу є 

зменшення обчислень які в ній відбуваються, та перенесення етапу обробки даних 

з сенсорів на віддалений сервер. У випадку повної залежності системи від серверу 

та використання мікрофонів або камер, обсяги даних можуть бути значними. 

Доступні технології зв'язку мають свої переваги та недоліки, наприклад 

стільниковий зв'язок (GSM/LTE) забезпечує широке покриття, але є енергоємним 

та вимагає оплати послуг. Недостатнє покриття мереж у сільській місцевості 

залишається серйозною перешкодою, а обмежена пропускна здатність може 

впливати на можливість моніторингу в реальному часі. 

Аналіз великих масивів даних, зібраних сенсорами, особливо за допомогою 

складних моделей нейронних мереж, вимагає значних обчислювальних ресурсів. 

Існує два основних підходи до обробки даних: хмарні обчислення та граничні 

обчислення. Хмара надає практично необмежені ресурси для зберігання та обробки 

даних, що дозволяє тренувати складні моделі та проводити глибокий аналіз. Однак 

цей підхід вимагає стабільного інтернет-з'єднання, пов'язаний із затримками 
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передачі даних та витратами на трафік. Граничні обчислення передбачають обробку 

даних безпосередньо на пристрої моніторингу. Це зменшує затримки, знижує 

вимоги до пропускної здатності мережі, та дозволяє системі функціонувати 

автономно навіть за відсутності стабільного зв'язку. Проте, обчислювальні 

можливості та обсяг пам'яті таких пристроїв обмежені, що накладає обмеження на 

складність використовуваних моделей нейронних мереж. Вибір між цими 

підходами є важливим компромісом, що залежить від конкретних завдань 

моніторингу, вимог до оперативності та умов розгортання системи [64]. 

Зовнішні фактори середовища також можуть впливати на роботу системи. 

Погодні умови можуть пошкоджувати електроніку або впливати на показники 

сенсорів. Зміни освітлення ускладнюють роботу камер, а зовнішні шуми (від 

транспорту, птахів тощо) можуть заважати акустичному моніторингу [68]. Це 

вимагає розробки стійких до зовнішніх впливів апаратних рішень та алгоритмів, 

здатних фільтрувати шум та адаптуватися до мінливих умов. 

Важливим викликом є біологічна мінливість самих бджіл. Поведінка, 

фізіологія та реакція на стресори можуть суттєво відрізнятися між різними 

породами медоносних бджіл [22]. Генетичне різноманіття всередині колонії також 

впливає на її характеристики. Крім того, кліматичні умови та доступність кормових 

ресурсів у конкретному регіоні формують унікальні патерни активності. Це 

означає, що моделі нейронних мереж, навчені на даних, зібраних в одному регіоні 

або з однієї породи бджіл, можуть погано узагальнюватися на інші умови. 

Подолання цієї проблеми вимагає збору різноманітних навчальних даних, що 

охоплюють різні генетичні лінії, географічні зони та сезони, а також розробки 

адаптивних моделей або використання методів трансферного навчання для 

налаштування моделей під конкретні умови. 

В наступних розділах даної роботи наведено детальніший огляд проблем 

впровадження систем моніторингу бджолиної сімʼї на основі нейронних мереж, а 

також огляд методів їх можливого вирішення. 
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1.6 Висновки до першого розділу 

 

У першому розділі дисертаційної роботи надано аналіз стану проблеми 

автоматизованого моніторингу бджолиних сімей з використанням нейронних 

мереж. За останні роки використання нейронних мереж в апікультурі отримало 

значний розвиток. Бджолина сім’я як складна біологічна система, потребує 

ефективних методів ідентифікації стану, що є складним завданням для традиційних 

методів спостереження. Традиційні методи моніторингу мають суттєві обмеження: 

суб'єктивність оцінки, залежність від досвіду бджоляра, трудомісткість, 

інвазивність, несистематичність. Було проаналізовано сучасні сенсорні технології 

для моніторингу бджолиних сімей, а також обґрунтовано доцільність застосування 

нейронних мереж для аналізу даних, отриманих від сенсорів. Систематизовано 

основні стани бджолиних сімей (здорова сім'я, роїння, наявність паразитів, 

відсутність матки, колапс) та методи їх ідентифікації за допомогою нейронних 

мереж. Наведено ключові проблеми інтеграції сенсорів та обробки даних у 

реальних умовах: складність розміщення сенсорів у специфічному середовищі 

вулика, забезпечення енергопостачання систем моніторингу, обмеження технологій 

зв'язку, необхідність значних обчислювальних ресурсів та вплив біологічної 

мінливості бджіл різних порід. Також було виявлено прогалини в існуючих 

дослідженнях щодо ідентифікації деяких станів бджолиних сімей та комбінування 

різних типів сенсорних даних, що підкреслює актуальність подальших розробок у 

цьому напрямку. Обґрунтовано необхідність комплексного дослідження систем 

моніторингу стану бджолиних сімей на основі неінвазивних сенсорних технологій 

та нейронних мереж для раннього виявлення проблем та вчасного втручання 

пасічника з метою запобігання втрат бджолиних сімей. 

Основні науково-практичні результати першого розділу опубліковано в 

роботах [69–81]. 
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 РОЗДІЛ 2 

НЕЙРОМЕРЕЖЕВІ МОДЕЛІ ВІЗУАЛЬНОЇ ІДЕНТИФІКАЦІЇ БДЖІЛ ТА ЇХ 

СТАНУ 

 

 

2.1 Аналіз сучасного стану проблеми візуальної ідентифікації стану 

бджіл 

 

З розвитком технологій IoT та підвищенням доступності засобів цифрової 

зйомки, широкому загалу стали доступнішими використання відеокамер та 

технологій комп'ютерного зору для систем моніторингу. Останніми роками 

спостерігається зростання зацікавленості до підходів, що поєднують використання 

технологій комп'ютерного зору та нейронних мереж для розв'язання різноманітних 

практичних задач. Одним із актуальних застосувань таких підходів є моніторинг 

стану бджолиних вуликів, адже бджоли можуть мати виражені візуальні ознаки 

різноманітних фізіологічних та поведінкових станів, такі як якість розплоду на 

рамках, наявність паразитів, або загальне зниження або підвищення активності 

колонії. 

Ідентифікація стану бджолиного вулика за допомогою візуальних даних та 

нейронних мереж становить широкий комплекс взаємопов'язаних задач, над 

вирішенням яких дослідники працюють упродовж останніх років. Застосування 

методів глибокого навчання до аналізу зображень бджіл та бджолиних вуликів 

дозволяє автоматизувати процеси моніторингу, зменшуючи необхідність фізичного 

втручання в життя колонії та підвищуючи точність діагностики стану бджолиних 

сімей. Останніми роками спостерігається стійке зростання кількості наукових 

праць, присвячених цій темі. 

У статті [45] представлено систему внутрішнього візуального моніторингу 

бджіл, що використовує RGB-камери для безконтактного спостереження за 

колонією взимку. Камери розміщені між рамками та під вуликом і працюють у 
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поєднанні з червоним підсвічуванням, що забезпечує мінімальне втручання у 

поведінку бджіл. Камера, що розміщена всередині рамки, оснащена рідинною 

лінзою з динамічним фокусом, що дозволяє адаптивно змінювати глибину різкості 

відповідно до рухів бджіл. Особливу увагу приділено автоматичному відбору 

сфокусованих зображень із використанням алгоритмів оцінки різкості. Отримані 

кадри продемонстрували високу якість, зокрема можливість виявлення паразитів 

Varroa destructor. Також протестовано базову інтеграцію з моделлю YOLOv8 для 

ідентифікації бджіл, що підкреслює потенціал системи як частини ширшої 

нейромережевої архітектури моніторингу. 

У праці [82] запропоновано метод глибокого навчання для виявлення бджіл, 

що несуть пилок, із використанням згорткової нейронної мережі. Метою 

дослідження було створення автоматизованої системи для класифікації бджіл із 

пилком і без нього, що може стати основою для подальшого неінвазивного 

моніторингу активності запилення. Для тренування моделі автори сформували 

набір даних із відеозаписів входу у вулик, що охоплював більше ніж 70 000 

зображень. Результати показали, що точність класифікації сягала 94% при 

використанні власного набору даних, що свідчить про доцільність застосування 

CNN для виявлення поведінкових характеристик бджіл. Крім того, автором 

проведено порівняння ефективності навчання CNN використовуючи зображення в 

кольорових моделях RGB та HSV, результати якого показали що модель навчена на 

зображеннях RGB в середньому показує результати точності на 2,5% кращі за 

модель на основі зображень HSV. 

У [83] автори досліджували можливість автоматизованої класифікації станів 

бджіл за допомогою глибокого навчання на основі зображень, зокрема виявлення 

таких станів, як здорова бджола, наявність пилку, паразитування Varroa destructor, 

напади мурах, крадіжки меду та зараження маленькими вуликовими жуками. Було 

використано три великі відкриті набори даних зображень бджіл, на яких зображено 

різні умови вулика. Для обробки зображень застосовувались попередньо 

натреновані згорткові нейронні мережі. Найкращі результати досягнуто при 

використанні GoogLeNet та VGG-19, де точність класифікації сягала 99,07% (F1-
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метрика 0.9905) на тестовому наборі, особливо в задачах визначення бджіл з пилком 

та виявлення кліща. Однак, автори вказують на сильну залежність моделей від 

структури набору даних – для різних датасетів найкращими виявились різні 

архітектури. Також зазначено, що виявлення рідкісних класів (наприклад, 

«відсутність матки») є слабким місцем усіх моделей через нерівномірність даних. 

У роботі [84] метою дослідження було створення автоматизованої системи 

розпізнавання безжальних бджіл на основі глибокого навчання. Автори 

запропонували використання Faster R-CNN у рамках TensorFlow Object Detection 

API для класифікації двох видів: Heterotrigona itama та Heterotrigona erythrogastra. 

За результатами проведеного дослідження F1-метрика становила 68,66%. Аналіз 

результатів показав, що класифікатор часто плутає темні ділянки на зображеннях 

як ознаку іншого виду бджіл, що призводить до хибнопозитивних рішень. 

Обмежений обсяг навчального набору, залежність від умов освітлення, відео 

компресії та невисока якість зображень негативно впливали на узагальнення 

моделі. Автори підкреслюють, що покращення якості відео, зйомка з вищим 

контрастом, а також випробування інших класифікаторів та глибших архітектур 

може підвищити продуктивність у подальших дослідженнях. 

У роботі [85] представлено автоматизовану систему моніторингу активності 

медоносних бджіл та визначенню їх станів. Основна увага приділяється 

комп’ютерному баченню, що реалізоване через відеоаналіз із входу вулика. Система 

базується на YOLOv7-tiny і розгортається на Jetson Nano, забезпечуючи обробку 

відео у реальному часі з високою точністю, з можливостю додаткового виявлення 

збирання пилку та кліща Varroa. 

У дослідженні [14] розглянуто задачу виявлення бджіл, які несуть пилок, за 

допомогою методів комп’ютерного зору на основі відеозаписів входу у вулик. 

Особлива увага приділена якісному збору візуальних даних: для цього було 

використано IP-камеру зі стабілізацією положення бджіл на рампі, де вони 

перебувають у фокусі, а також використання статичного блакитного фону. 

Дослідження показало, що використання кольорових ознак (color feature maps) 

суттєво покращує точність моделі, а оптимізовані згорткові архітектури досягли 
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понад 96% точності. Робота демонструє критичне значення візуальної якості та 

обробки кольору для розпізнавання бджолиної поведінки. 

Авторами роботи [63] запропоновано систему візуального моніторингу стану 

бджолиних сімей, що базується на аналізі зображень із камери, встановленої у 

верхній частині вулика. В дослідженні приділено увагу на застосуванні сучасних 

моделей глибокого навчання для виявлення бджіл на зображеннях, серед яких були 

використані SSD MobileNet v1, SSD Inception v2 та Faster R-CNN Inception v2. 

Найвищу точність виявлення бджіл досягнуто за допомогою Faster R-CNN (94,6%), 

тоді як легші моделі SSD демонстрували нижчу, проте швидшу обробку (наприклад, 

SSD MobileNet v1 – 91,2%). Авторами також було проведено експеримент, за 

результатами якого система успішно ідентифікувала підготовку до роїння через 

збільшену кількість ідентифікацій.  Дослідження підкреслює компроміс між 

точністю та обчислювальними ресурсами при виборі моделі для ідентифікації 

бджіл. Використання точніших моделей, таких як Faster R-CNN, потребує 

потужнішого обладнання, що може бути недоступним у польових умовах. З іншого 

боку, легші моделі, як SSD MobileNet, можуть працювати на вбудованих пристроях, 

але точність їх результатів може бути нижчою. 

Унікальний підхід до визначення стану бджіл засобами компʼютерного зору 

та глибокого навчання було запропоновано у дослідженні [13]. В ньому 

запропоновано інтелектуальну систему моніторингу з функцією оцінки здоровʼя 

бджоли, в основі якої полягають дві моделі: одна виконує виявлення бджіл на 

зображеннях, інша класифікує стан здоров’я ідентифікованих бджіл. Для цього 

використовувались згорткові нейронні мережі, зокрема архітектура Mask-RCNN 

для ідентифікації бджіл та модифікований DCNN для класифікації. Модель була 

навчена на RGB-зображеннях та відеоданих з вуликів, де окремі бджоли 

анотувались вручну. За результатами, модель досягла точності 95% у класифікації 

стану здоров’я бджоли та 82% у виявленні бджіл, проте використання Mask-RCNN 

призвело до низького часу обробки кадрів (2–3 кадри/с), що обмежує використання 

в режимі реального часу. 
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На основі аналізу існуючих робіт по напрямку використання нейронних 

мереж для ідентифікації бджіл на зображеннях та їх станів можна виділити дві 

основні задачі, які вирішуються нейронним мережами: ідентифікація бджіл на 

зображенні, та класифікація їх станів. Також увагу варто приділити проблемам 

пов’язаним з візуальним моніторингом та застосуванням моделей нейронних 

мереж, та методам їх вирішення. Першим питанням в розробці автоматизованих 

систем для візуального моніторингу є безпосередньо розміщення камер. Невдале 

позиціонування може суттєво знизити інформативність отриманих даних. Також, 

важливим фактором є обмеженість простору в який можна встановити таку камеру, 

а також її вплив на вулик, адже наявність зовнішніх пристроїв може завдати 

бджолам стрес [45]. Так, в роботах [3,14,85,86] для встановлення камери було 

використано окремий блок з однорідним фоном, що суттєво спрощує ідентифікацію 

бджіл, але потребує додаткових модифікацій бджолиного вулика. Оскільки такі 

модифікації обмежені у доступі світла, в дослідженнях [3,45,85] автори 

використали інфрачервону LED-підсвітку зони, а в роботі [14] використовувалося 

лише природне світло з розсіювачем. Описані обмеження суттєво впливають на 

вибір та можливості камери, для отримання якісного зображення з якої важлива 

фокусна відстань. Також ключовим фактором є якість освітлення, яке може бути 

обмежена конструкцією або погодними умовами [45]. 

Однією з основних проблем висвітлених в роботах [13,60,63,84,85] є відчутні 

обмеження у обчислювальній потужності комп’ютерів при використанні моделей 

ідентифікації об’єктів. Хоча згорткові моделі класифікації ідентифікованих бджіл 

працюють швидко, саме процес ідентифікації в деяких випадках може 

опрацьовувати до 3-х кадрів на секунду [13]. Як показано в дослідженнях [60,63,87], 

вибір архітектури моделі для ідентифікації об’єктів та апаратної платформи, на якій 

вона бути функціонувати, суттєво впливає на швидкість процесу ідентифікації. 

Через ці обмеження, останніми роками спостерігається тенденція до використання 

спеціалізованого мікрокомп’ютера NVIDIA Jetson Nano [63,85], що забезпечує 

кращу продуктивність при виконанні моделей нейронних мереж [88]. 
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Існуючі дослідження також застосовують альтернативні кроки оптимізації 

процесу ідентифікації бджіл на зображеннях. Ці кроки можуть включати зниження 

розміру зображень, які буде опрацьовувати модель, як наслідок підвищуючи 

швидкість її роботи, але втрачаючи деякі потенційно важливі деталі зображень 

[13,85]. Іншій підхід в дослідженнях включає відхід від ідеї безперервного 

візуального моніторингу, записуючи відео з деякою періодичністю, та 

опрацьовуючи зібраний матеріал між записами [85,86]. 

З огляду на виявлені проблеми та обмеження, у подальшій частині цього 

розділу представлено підхід до розробки моделей та методів, спрямованих на 

вирішення окремих з описаних вище задач. Запропоновані рішення ґрунтуються на 

сучасних архітектурах нейронних мереж і враховують типові для середовища 

бджолиних вуликів особливості візуальних даних. 

 

2.2 Моделі ідентифікації об'єктів для визначення бджіл на зображенні 

 

Задача ідентифікації об’єктів є ключовою важлива для візуального 

моніторингу стану вулика. Для її вирішення застосовуються різноманітні 

архітектури нейромережевих моделей, які характеризуються власними перевагами 

та недоліками. Далі розглянуто аспекти застосування таких моделей, а також 

запропоновано методи, спрямовані на підвищення точності та ефективності 

отриманих результатів з огляду на пов’язані проблеми. 

 

2.2.1 Навчання моделей для ідентифікації бджіл на зображенні 

 

У якості джерела даних для дослідження використовувалися фотографії, 

зроблені на камеру смартфона Samsung A20. Ці фотографії включають в себе 

фотографії рамок з бджолами, зробленими на різній відстані та при різному 

освітленні. Кількість бджіл на одній фотографії може складати до двохсот, однак 

через специфіку використаних моделей вони можуть ідентифікувати тільки 90 
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бджіл на зображенні. З огляду на цю специфіку, а також для полегшення процесу 

анотування, кожну фотографію розміром 4128х3096 пікселів без попередньої 

обробки було розділено на 9 рівних частин розміром 1376х1032. Ці частини були 

використані для анотації вручну за допомогою програмного застосунку Remo [89]. 

Під час процесу анотації було вибрано тільки повні тіла бджіл, частини зображення 

де було видно тільки спину чи голову були проігноровані. В таблиці 2.1 наведено 

приклади виділень бджіл. 

 

Таблиця 2.1 

Виділення бджіл під час анотації 

  

 
 

(а) (б) (в) (г) 

 

Після анотації, набір даних було розбито на навчальну та тестову вибірку. На 

основі цих вибірок було сформовано файл формату TFRecord, який виступає в ролі 

джерела даних в процесі тренування моделі. 

Для проведення дослідження було використано 5 моделей з публічного 

репозитарію TensorFlow 2 Detection Model Zoo[90]: Faster R-CNN ResNet152 V1, 

Faster R-CNN Inception ResNet V2, SSD MobileNet V2 FPNLite, SSD ResNet50 V1 

FPN, CenterNet Resnet50 V2. Ці моделі використовують різні архітектури, 

включаючи різні підходи до виділення ознак та стратегій їх класифікації. 

Виходячи з наведених архітектур моделей, їх можна розділити на два типи: 

двоетапні та одноетапні детектори. Двоетапні детектори спочатку знаходять на 

зображенні ділянки, де потенційно можуть бути бджоли, а потім вже детально 

аналізують ці ділянки для точної ідентифікації. Такі моделі зазвичай дуже точні, 

навіть для маленьких об'єктів, але через свою складність вони працюють 

повільніше і потребують більше обчислювальних ресурсів. Однією з поширених 
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реалізацій двоетапного детектору є архітектура Faster R-CNN, що використовує 

мережу пропозиції регіонів (RPN) для визначення потенційних ділянок [91,92]. 

Інший підхід – це одноетапні детектори, наприклад, SSD (Single Shot 

MultiBox Detector). Ці моделі намагаються знайти та класифікувати бджіл за один 

прохід, що робить їх значно швидшими [93]. Це особливо важливо для систем, що 

мають працювати в реальному часі або на пристроях з обмеженими 

обчислювальними можливостями. Щоб зробити їх ще ефективнішими, часто 

використовують полегшені "основи", наприклад MobileNet, яка спеціально 

розроблена для використання на мобільних пристроях [94]. Хоча суттєвою 

перевагою таких моделей є швидкість, у випадку ідентифікації малих чи 

прихованих об’єктів точність одноетапних моделей може бути дещо нижчою. 

Архітектура CenterNet також реалізує одноетапний підхід, визначаючи об'єкти за 

їхніми центральними точками [92,95]. 

Важливо також відмітити іншу характеристику використаних моделей - 

вхідну роздільну здатність зображення. Усі зображення масштабуються до цього 

розміру перед обробкою нейронною мережею. Таке масштабування дозволяє 

нейронній мережі працювати з зображеннями однакового розміру, незалежно від 

оригінальної роздільної здатності вхідного зображення. Серед моделей, SSD 

MobileNet має роздільну здатність 320х320, Faster R-CNN ResNet152, Faster R-CNN 

Inception ResNet, SSD ResNet50 - 640х640, а CenterNet Resnet50 - 512х512. 

Для навчання моделей було застосовано метод трансферного навчання. Такий 

підхід передбачає, що моделі, яка була навчена на великому наборі даних, зберігає 

здатність розпізнавати ключові ознаки. Це дозволяє ефективно перенести ці 

здатності на менший набір даних, що має обмежений обсяг або недостатню 

різноманітність. Крім того, застосування попередньо навченої моделі дозволяє 

скоротити час навчання і покращити точність порівняно з навчанням моделі з нуля, 

завдяки вже сформованим узагальненим ознакам, які можна адаптувати для 

конкретного завдання [46]. 

Доцільність використання трансферного навчання для ідентифікації бджіл на 

зображеннях полягає в тому, що типові моделі, наприклад, архітектури згорткових 
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нейронних мереж, попередньо навчені на великих наборах, таких як ImageNet або 

COCO, уже містять базові ознаки розпізнавання об’єктів. Ці моделі здатні 

ефективно виявляти та розрізняти особливості форм, текстур та кольорів, що 

дозволяє швидко адаптувати їх для виявлення бджіл без необхідності великої 

кількості спеціалізованих зображень. 

Кожна модель була навчена згідно з відповідною рекомендованою 

процедурою Tensorflow API, використовуючи хмарний сервіс Google Colaboratory з 

доданими оперативною пам’яттю та графічним прискорювачем. Одним з головних 

вимірювань під час навчання нейронної мережі є значення функції втрат. Ця 

функція дозволяє вимірювати відстані або різницю між розрахунковим виходом 

моделі та основною істиною навченої моделі. Результати навчання моделей 

наведено у Таблиці 2.2. 

 

Таблиця 2.2 

Гіперпараметри та кінцевий стан навчених моделей 

Архітектура Розмір 

групи 

Кількість 

епох 

Значення 

функції втрат 

Час навчання 

Faster R-CNN 

ResNet152 

8 25000 0.0024 2 години 

Faster R-CNN 

Inception ResNet V2 

32 40000 0.1367 2 години 

SSD ResNet50 8 12000 0.0533 6 годин 40 

хвилин 

SSD Mobilenet V2 64 45000 0.0528 4 години 20 

хвилин 

CenterNet Resnet50   

V1 

48 35000 0.1685 5 годин 

 

Варто зазначити, що модель R-CNN ResNet152 V1 спочатку навчалася 45 000 

епох, проте після 25 000 епохи модель не показувала зниження значення функції 
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втрат. Щоб уникнути присутності фактору перетренування в результатах, далі 

використовуватиметься проміжний стан моделі з епохи 25 000. Виходячи з 

наведених у таблиці даних, можна відмітити що хоч моделі і тренувались достатньо 

довго навіть за спеціалізованих умов, моделі на основі архітектури Faster R-CNN 

завершили навчання більш ніж вдвічі швидше за інші. 

 

2.2.2 Огляд результатів роботи навчених моделей 

Для порівняння результатів роботи кожної з навчених моделей на задачі 

ідентифікації бджіл було застосовано наступні метрики влучності та повноти. Для 

їх визначення застосовується матриця невідповідності, яка є базовим інструментом 

для оцінки якості класифікатора та відображає співвідношення між 

прогнозованими та фактичними значенням. Для бінарної класифікації матриця 

містить чотири основних елементи: 

• Істинно позитивні (True Positive, TP) – кількість правильно 

класифікованих позитивних зразків; 

• Істинно негативні (True Negative, TN) – кількість правильно 

класифікованих негативних зразків. У випадку задачі ідентифікації об’єктів це 

значення зазвичай не використовується. 

• Хибно позитивні (False Positive, FP) – кількість негативних зразків, 

помилково класифікованих як позитивні; 

• Хибно негативні (False Negative, FN) – кількість позитивних зразків, 

помилково класифікованих як негативні [46]. 

Матриця невідповідності дозволяє детально аналізувати помилки 

класифікації між різними станами, що є важливим для розуміння обмежень моделі 

та потенційних шляхів її вдосконалення.  

Метрика влучності (Precision) вимірює частку прикладів, класифікованих 

моделлю як позитивні, які дійсно є позитивними. Формула для розрахунку 

влучності: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃	 + 	𝐹𝑃
(2.1) 
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Високе значення точності вказує на низький рівень хибних позитивів (FP) 

[46]. У контексті ідентифікації бджіл, неправильне визначення області як бджоли 

(FP) може призвести до складнощів на етапі класифікації ідентифікованих бджіл. 

Повнота (Recall) є метрикою, що характеризує частку правильно 

класифікованих позитивних зразків серед усіх фактично позитивних зразків [46]. 

Математично ця метрика обчислюється за формулою: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃	 + 	𝐹𝑁
(2.2) 

В задачі ідентифікації бджіл значення цієї метрики є ключовим та показує 

який відсоток бджіл загалом було успішно ідентифіковано на зображенні. 

На основі цих двох метрик обчислюється оцінка F1, що є гармонійним 

середнім між влучностю та повнотою. Для отримання високого F1 Score необхідні 

як висока точність, так і висока повнота [46]. Формула для розрахунку оцінки F1: 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑅𝑒𝑐𝑎𝑙𝑙

(2.3) 

Варто зазначити, що між влучністю та повнотою часто існує обернений 

зв'язок, спроби покращити одну метрику можуть призвести до погіршення іншої, 

та, як наслідок, привести до зниження оцінки F1. 

Для перевірки результатів роботи моделі, від початкового набору даних було 

відокремлено 28 сегментів. Ці зображення не входили в тренувальний та тестовий 

набори для забезпечення неупередженої оцінки. Процес перевірки включав в себе 

роботу моделей на сегментах та подальший ручний аналіз ідентифікацій. Для 

роботи моделі було використано платформу з процесором Intel i7-10750H та 

графічним прискорювачем Nvidia Geforce GTX 1650 Ti 4 GB. Результати аналізу 

роботи моделей на окремій вибірці наведені у Таблиці 2.3. Метрики у таблиці було 

обраховано шляхом аналізу правильних детекцій бджіл на зображенні (TP), 

повторних, часткових, та помилкових детекцій (FP), та кількості бджіл, що не було 

виявлено (FN). 
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Таблиця 2.3 

Результати навчання моделей ідентифікації бджіл 

Архітектура TP FP FN Повнота Влучність F1 Середній 

час, мс 

Faster R-CNN 

ResNet152 

471 2 226 0.676 0.996 0.81 401 

Faster R-CNN Inception 

ResNet V2 

326 10 371 0.468 0.97 0.63 541 

SSD ResNet50 434 4 263 0.623 0.991 0.77 695 

SSD Mobilenet V2 561 24 136 0.805 0.959 0.88 675 

CenterNet Resnet50 V1 457 5 240 0.656 0.989 0.79 662 

 

На основі результатів, наведених у таблиці 2.3, модель на основі SSD 

MobileNet V2 показала найкращі результати в метриках F1 (0.88) та повноти (0.805). 

Однак, ця модель також продемонструвала найгірший показник хибних виявлень, 

що в 2.7 рази вище за середнє значення серед досліджуваних моделей. З наведених 

у таблиці 2.4 візуалізацій, можна побачити, що модель виділяла обмежувальною 

рамкою краї зображень, пусті місця, а також повторно відмічала ідентифікованих 

бджіл, що мало негативний вплив у вигляді високого значення FP. 

 

Таблиця 2.4 

Візуалізація тестових зображень з обмежувальними рамками 

Архітектура Зображення 1 Зображення 2 

Faster R-CNN 

ResNet152 
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Faster R-CNN 

Inception ResNet V2 

  
SSD ResNet50 

  
SSD MobileNet V2 

  
CenterNet Resnet50 

V1 

  
 

Також є сенс відмітити результати Faster R-CNN ResNet152 V1. Хоч ця модель 

і не знаходила бджіл якщо їх частка на зображенні замала, і через це мала нижче 

значення успішно ідентифікованих обʼєктів, ця модель загалом показала задовільні 

результати у визначенні бджіл при найменших середніх витратах часу. 
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2.3 Методи оптимізації ідентифікації бджіл на зображенні 

 

В попередньому підрозділі було розглянуто роботу моделей на різних 

зображеннях бджіл з переважно хорошою якістю. Але через можливі зміни погоди, 

часу доби або стану обладнання, зображення може відрізнятись.  Виходячи з цього 

можна сформулювати задачу, що для стабільної роботи системи ідентифікації стану 

модель має працювати не тільки в ідеальних умовах, що відповідають даним на 

яких модель була тренована, але і за умов зміненого освітлення та якості 

зображення. Покращення та нормалізація зображення може бути важливим етапом 

попередньої обробки для оптимізації роботи моделей виявлення об’єктів. 

Для навчання моделей використовувався набір даних з попереднього 

підрозділу, на базі якого було також розроблено наступні набори даних: 

"пошкоджений" набір даних, в який увійшли зображення з штучно зміненими 

яскравістю в межах +- 20%, контрастом в межах +- 0.5, та набір з розмиттям Гаусса. 

Розмиття Гауса було взято до уваги оскільки це поширений метод для зменшення 

шуму на зображенні, що могло би покращити роботу моделі шляхом прибирання 

дрібних деталей. Оскільки застосування занадто агресивного розмиття може 

негативно вплинути на можливість ідентифікації бджіл навіть людиною, для 

легкого розмиття було використано засоби бібліотеки OpenCV [96] з аргументами 

(3, 3). 

Для навчання було використано два методи покращення зображення: 

звичайний алгоритм вирівнювання гістограми та CLAHE. Вирівнювання 

гістограми (Histogram Equalization, HE) - це метод підвищення контрастності 

шляхом вирівнювання гістограми зображення. HE працює з усім зображенням, тим 

самим глобально підвищуючи контрастність, що може бути корисним для 

зображень, де фон і передній план темні або обидва світлі. Автори дослідження [97] 

показали, що використання адаптивного вирівнювання гістограми може до кращих 

результатів ідентифікації об’єктів в умовах недостатнього освітлення.  Хоча цей 

метод простий і ефективний, він може викликати спотворення кольору або шум 
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через зміну середньої яскравості зображення або надмірне збільшення контрасту 

[98,99]. 

На відміну від глобального підходу традиційного вирівнювання гістограми, 

адаптивне вирівнювання гістограми з обмеженим контрастом (Contrast Limited 

Adaptive Histogram Equalization, CLAHE) працює шляхом поділу зображення на 

менші плитки, а потім індивідуального вирівнювання гістограми кожної плитки 

[100]. Зосереджуючись на менших ділянках, CLAHE може краще впоратися з 

варіаціями яскравості та підвищити локальний контраст, що робить його особливо 

придатним для зображень з різноманітним фоном [101]. Ефективність CLAHE 

значною мірою залежить від його параметрів, зокрема розміру блоку та межі 

контрастності, що вимагає точного налаштування для отримання оптимальних 

результатів. У цій роботі CLAHE було застосовано за допомогою інструментів 

OpenCV з параметрами (8,8), оскільки на основі візуального огляду це дало 

оптимальні результати між покращеною контрастністю та спотворенням. 

Приклад використання алгоритмів покращення зображення наведено в 

Таблиці 2.5. На прикладах помітно рівномірніший розподіл рівнів кольорів. 

Вирівнювання гістограми зробило зображення набагато яскравішим, в той час як 

CLAHE показало кращий результат у підкресленні деталей. 

 

Таблиця 2.5 

Застосування алгоритмів нормалізації зображень. 

 - HE CLAHE 
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Рівні червоного 

кольору 

   
Рівні зеленого 

кольору 

   
Рівні синього 

кольору 

   
 

Процес навчання моделі та перевірки результатів полягає в наборі чітко 

структурованих кроків. Вхідні зображення проходять початкову обробку, що 

включає в себе застосування відповідного до задачі алгоритму нормалізації 

зображень. Зображення, що використовуються для тестування, проходять такий 

самий процес, щоб упевнитись в однорідності даних. Після цього, модель 

тренується на підготовлених даних використовуючи інструменти Tensorflow Object 

Detection API. В якості архітектури для навчання було обрано SSD MobileNet V2 

FPNLite через високі результати в попередньому підрозділі, а також наявним 

простором для зменшення кількості хибнопозитивних ідентифікацій. 

Всі моделі були треновані протягом 22 тисяч епох з параметром розміру групи 

122. Додатково до моделей що базуються на алгоритмах вирівнювання гістограми 

та CLAHE, була тренована модель що використовувала засоби конвеєру Protobuf. 

Цей конвеєр дозволив додати до процесу навчання наступні засоби аугментації 

даних: 

• Коригування відтінку, що змінює відтінок на випадкову величину в 

межах [-0.02;0.02] 
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• Коригування насиченості, що змінює насиченість на випадкову 

величину в межах [0.8;1.25] 

• Коригування контрастності, що змінює контраст на випадкову 

величину в межах [0.8; 1.25] 

• Коригування яскравості, що змінює яскравість на випадкову величину 

в межах [0.8;1.2] 

Ці засоби були застосовані до випадкових зображень в процесі навчання, а 

методи нормалізації зображень не були додатково застосовані для навчання цієї 

моделі. 

Коли навчання моделей було завершено, кожна була протестована на 

відповідному наборі тестових зображень та було проведено ручну перевірку 

результатів ідентифікацій для обчислення матриці невідповідності. Для обчислення 

метрик було використано ідентифікації з коефіцієнтом впевненості моделі більше 

50%.  

Всі моделі були треновані використовуючи засоби Google Colab Pro з 

підвищеним ОЗУ та графічним прискорювачем, відповідно рекомендованої 

процедури тренування. Таблиця 2.6 показує прогресію функції втрат під час 

навчання моделей 

 

Таблиця 2.6  

Прогресія функції втрат 

Набір даних Кінцева функція втрат Графік функції втрат 

Початковий 0.023 
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HE 0.025 

 
CLAHE 0.025 

 
Protobuf 0.031 

 
 

Для навчання моделі була використана стратегія косинусного розпаду для 

швидкості навчання. Цей підхід дотримується косинусної кривої, щоб зменшити 

швидкість навчання від початкового високого значення до майже нуля, сприяючи 

як швидкому дослідженню простору рішень, так і точному налаштуванню 

параметрів моделі. Оскільки стратегія косинусного розпаду для швидкості 

навчання залежить від початкового коефіцієнту та кількості епох, що були однакові 

для всіх параметрів, прогрес параметру швидкості навчання був однаковим для всіх 

чотирьох моделей, як показано на зображенні 2.1 
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Рисунок 2.1 Графік прогресу швидкості навчання 

 

Виходячи з результатів наведених у таблиці 2.7, додавання нормалізації 

зображення до процесу не додало точності та повноти. Застосування CLAHE також 

не покращило ці метрики, але отримані результати близькі до результатів 

оригінальної моделі. 

 

Таблиця 2.7 

Результати роботи моделей на звичайному наборі даних. 

 Звичайний Звичайний + розмиття 

 Повнота Влучність F1 Повнота Влучність F1 

Оригінальний 81.8% 90% 0.857 74.4% 90% 0.815 

HE 71% 85% 0.774 61.2% 89% 0.725 

CLAHE 79.9% 87% 0.833 76.1% 90% 0.825 

PROTOC 62.3% 86% 0.723 56.6% 87% 0.686 

 

Виходячи з даних наведених в таблиці 2.8, у випадку роботи з пошкодженим 

набором даних модель на базі CLAHE показала найкращі результати на задачі 

ідентифікації бджіл. Таблиця 2.9 показує результати ідентифікації об’єктів на 

тестових зображеннях з алгоритмом CLAHE. 
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Таблиця 2.8  

Результати роботи моделей на пошкодженому наборі даних 

 Пошкоджений набір даних Пошкоджений набір даних + 

розмиття 

 Повнота Влучність F1 Повнота Влучність F1 

Оригінальний 70.6% 92.0% 0.799 63.6% 91.0% 0.749 

HE 60.2% 90.0% 0.721 54.0% 89.0% 0.672 

CLAHE 80.5% 89.0% 0.845 70.8% 89.0% 0.789 

PROTOC 62.9% 87.0% 0.730 55.7% 84.0% 0.670 

 

Таблиця 2.9  

Результати ідентифікації об’єктів 

Набір даних Зображення з ідентифікаціями 

Звичайний 

 
Звичайний + розмиття 
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Пошкоджений набір даних 

 
Пошкоджений набір даних + 

розмиття 

 
 

Результати цього дослідження показують, що використання алгоритмів HE та 

CLAHE не підвищило точність моделі виявлення об’єкта в цілому. Іншим важливим 

висновком є те, що використання алгоритму CLAHE може призвести до більш 

стабільних результатів у різних умовах освітлення та невеликих дефектів у 

забарвленні зображення. Однак використання функцій HE, розмиття та розширення 

даних конвеєра Protobuf не показало значних результатів у жодному з тестів. 

Це дослідження відкриває нові теми для подальших досліджень, наприклад 

огляд можливості використання кольорових фільтрів для ідентифікації бджіл на 

рамках та використання фотографій бджіл різних порід. Також обмеженням в задачі 

покращення зображень слугувала переважно висока якість початкових фотографій, 

подальші дослідження можуть розглянути використання цих алгоритмів на фото 

зроблених в умовах слабкого освітлення, що переважно провокує появу "шуму" на 

результуючих зображеннях. 
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В роботі [45] дослідники використовували інфрачервоне освітлення для 

ідентифікації бджіл в умовах відсутнього природнього освітлення. Однак, 

фотографії створені в таких умовах мають тільки чорно-білі деталі. Можна зробити 

припущення, що використання чорно-білих зображень для задачі ідентифікації 

бджіл на зображенні може знизити якість роботи моделей через зменшення наявної 

інформації, або підвищити за умови що чорно-біле зображення буде мати достатньо 

деталей для ідентифікації. 

Для перевірки цього припущення, було застосовано подібний до описаного 

раніше підхід: перед навчанням та тестуванням сегменти були перетворені в чорно-

білий спектр та на їх основі сформовано набори даних для навчання трьох моделей 

на основі архітектури SSD MobileNet V2 FPNLite. Для роботи з першою моделлю 

не було застосовано ніяких трансформацій, для другої було застосовано алгоритм 

HE, а для третьої алгоритм CLAHE. Після навчання моделей було проведено аналіз 

ідентифікацій на окремій вибірці, результати якого наведено в таблиці 2.10.   

 

Таблиця 2.10 

Результати роботи навчених моделей на тестовій вибірці 

Набір даних Повнота Влучність F1 

Звичайний 0,831 0.979 0,90 

HE 0,791 0,917 0,85 

CLAHE 0,788 0,924 0,85 

 

Виходячи з наведених в Таблиці 2.10 результатів, трансформація зображень в 

чорно-білий спектр та подальше застосування алгоритмів покращення зображення 

не дало приросту точності ідентифікації бджіл на зображеннях. Однак, значення 

метрики F1 для моделі навченої без доданих змін показало кращий результат ніж 

наведені в таблицях 2.3 та 2.7, що свідчить про перспективність такого підходу для 

покращення результатів ідентифікації бджіл на зображеннях. 

Суттєвим обмеженням навчених в цьому підрозділі моделей є їх 

стандартизація. Нейронні мережі, навчені на даних однорідного формату, можуть 
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не досягати оптимальних результатів при відхиленні від початкових умов, 

наприклад при заміні камери або породи бджіл. Крім того, відсутність варіативності 

в умовах зйомки, значно обмежує здатність моделі адаптуватись до реальних умов 

експлуатації, де такі параметри постійно змінюються. Різноманітність набору 

даних для навчання моделі є одним з ключових факторів її універсальності, але збір 

варіативних даних потребує багато часу та зусиль. Подальші дослідження можуть 

бути спрямовані на навчання універсальнішої моделі, що включає в себе фотографії 

різних типів бджіл в різних умовах. 

 

2.4 Моделі класифікації стану окремої бджоли 

 

У попередніх підрозділах було описано процес ідентифікації бджіл на 

зображеннях. Підрахунок бджіл є вагомою статистикою для подальшої оцінки 

активності вулика, проте інформація про стан окремих особин може мати суттєвіше 

значення для оцінки здоровʼя бджолиної сімʼї. Однак, у випадку використання 

фотографій бджіл на стільниках, навіть при успішній ідентифікації, кінцева область 

може частково містити інших бджіл та завжди мати різний фон, ускладнюючи 

задачу класифікації. Також, стільники та бджоли між собою мають подібний 

кольоровий контраст, що може негативно вплинути на виявлення значущих ознак 

бджоли. В деяких роботах на цю тему, що включали використання нейромережевих 

моделей для класифікації стану бжіл на зображеннях, було використано фон 

статичного кольору [83,85], або з переважно однорідним патерном [82]. Такий 

підхід надає суттєві переваги порівняно з фотографіями бджіл на стільниках, адже 

дозволяє нейронній мережі краще концентруватись на відмінностях безпосередньо 

бджіл, оминаючи вплив фону. Наведені дослідження показують можливості 

використання згорткових нейронних мереж для класифікації бджіл та виявлення на 

них пилку або кліща варроа. Використання таких моделей потребує менше 

обчислювальних ресурсів ніж в моделях ідентифікації бджіл, та може відбуватись 

на окремому спеціалізованому обладнанні, наприклад на мікроконтролерах серії 

Arduino Portenta [102]. 
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Застосування областей з виявленими бджолами з попереднього підрозділу 

було визнано недоцільним через недостатню репрезентативність різних 

поведінкових станів. В якості джерела даних було використано набір даних 

BeeDataset [103], що містить зображення розміром 300х150 на однаковому зеленому 

фоні, та відповідні анотації: чи є бджола в процесі охолодження, чи присутній на 

ній пилок, чи є на бджолі кліщ Varroa destructor, та чи є зображена комаха осою. 

Візуалізацію зображень з набору даних наведено на таблиці 2.11. Аналіз цих 

зображень дозволяє виділити видимі характеристики для відповідних станів 

бджоли: Оса візуально відрізняється від бджоли, наявність кліща Варроа видно на 

спині, а також під час охолодження бджола активно маше крилами, що робить їх 

розмитими на зображенні. 

 

Таблиця 2.11 

Приклади зображень бджіл у різних станах з набору даних BeeDataset 

     
оса бджола з кліщем 

Varroa destructor 

нормальна 

бджола 

бджола в 

процесі 

охолодження 

бджола з 

пилком 

 

З набору даних було вибрано 7490 зображень з класами "оса", " Varroa", 

"пилок" та "охолодження". На основі датасету, було створено дві вибірки: 

• Навчальна вибірка, що містить 80% від загальної кількості даних (5992 

зображення) 

• Тестова вибірка, що містить 20% (1498 зображення) 
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Перша модель представляє собою триступеневу згорткову нейронну мережу. 

Архітектура мережі складається з трьох послідовних згорткових блоків з фільтрами 

розміром 64, 32 та 16 відповідно. Кожний згортковий шар супроводжується 

активацією ReLU, пакетною нормалізацією для стабілізації процесу навчання та 

шаром максимального об’єднання для зменшення розмірності даних. 

Для запобіганню перенавчанню, після виділення ознак згортковими шарами 

застосовується шар випадкового відключення нейронів (Dropout). Перенавчання 

виникає, коли модель надто добре вивчає тренувальні дані, включаючи шум, і в 

результаті погано узагальнює на нових, не бачених раніше даних. Dropout є 

технікою регуляризації, розробленою для боротьби з перенавчанням у нейронних 

мережах, та полягає у випадковому "вимиканні" шляхом встановлення виходу в 

нуль певної частки нейронів у шарі для кожної ітерації навчання [104]. 

Запропонована модель використовує два шари Dropout, з коефіцієнтами 

ймовірності виключення нейрона 0,5 у першому та 0,4 у другому. Візуалізацію 

структури запропонованої згорткової нейронної мережі наведено на рисунку 2.2. 
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Рисунок 2.2 Архітектура згорткової нейронної мережі для класифікації станів 

бджіл 

 

Виходами в даній архітектурі нейронної мережі слугують чотири незалежні 

виходи з сігмоїдними функціями активації, що дозволяє одночасно визначати 

присутність кліщів варроа, пилку, ос та ознак охолоджувальної поведінки бджіл. 

Для стабілізації процесу навчання було використано систему вагових коефіцієнтів 

втрат, де вихід varroa_output отримав вагу 2.0, а інші виходи - 1.0. Для навчання 

моделей було використано значення параметру розміру пакету у 32. Навчання 

моделі тривало 40 епох без механізмів ранньої зупинки. Прогрес навчання моделі 

та результати наведено на рис. 2.3 та таб. 2.12, з наведених даних видно, що 

протягом 40 епох модель поступово покращувала свої показники, досягнувши на 

тестовому наборі високих значень точності: cooling - 97.1%, pollen - 95.5%, varroa - 

94.4%, wasps - 99.1%. 
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Рисунок 2.3 Прогрес навчання згорткової нейронної мережі 

 

Таблиця 2.12  

Результати навчання згорткової нейронної мережі 

Стан Втрати 

навчання 

Точність 

навчання 

Втрати 

тестування 

Точність 

тестування 

Охолодження 0.0244 0.9934 0.0324 0.9887 

Пилок 0.0781 0.9694 0.0840 0.9726 

Варроа 0.1230 0.9541 0.0873 0.9666 

Оса 0.0038 0.9993 0.0038 0.9987 

 

Для навчання другої моделі було застосовано підхід трансферного навчання. 

Модель була побудована на основі архітектури MobileNetV2, яка була адаптована 

для задачі багатокласової класифікації. Модель використовувала ваги, попередньо 

навчені на ImageNet, що забезпечило стартову перевагу завдяки вже вивченим 

ознакам. Для адаптації моделі було заморожено більшість шарів базової моделі, 

залишивши вільними для навчання лише останні 20 шарів. Це дозволило зберегти 
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загальні ознаки, вивчені на великому датасеті, водночас адаптуючи модель до 

конкретної предметної області. 

Архітектура включала глобальне усереднення активацій, шар регуляризації 

Dropout з коефіцієнтом 0.2, та чотири окремі виходи з softmax активацією для 

кожного класу. Модель компілювалась з оптимізатором Adam з швидкістю навчання 

0.0001 та використовувала функцію втрат sparse categorical crossentropy. Навчання 

відбувалось протягом 15 епох з механізмами зменшення швидкості навчання при 

відсутності активного покращення метрик.  На рис. 2.4 та таб. 2.13 наведено 

прогрес навчання моделі та результати. 

 

 
Рисунок 2.4 Прогрес навчання нейронної мережі на основі MobileNet 

 

Таблиця 2.13 

Результати навчання нейронної мережі на основі MobileNet 

Стан Втрати 

навчання 

Точність 

навчання 

Втрати 

тестування 

Точність 

тестування 

Охолодження 1.2445e-04 1.0000 0.0158 0.9960 

Пилок 1.8575e-04 1.0000 0.0599 0.9840 

Варроа 2.1221e-04 1.0000 0.0509 0.9853 
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Оса 9.4488e-05 1.0000 6.7449e-04 0.9993 

 

Аналіз результатів навчання виявив суттєві відмінності у поведінці моделей. 

MobileNetV2 продемонструвала надзвичайно швидку збіжність, досягнувши майже 

досконалої точності на тренувальному наборі вже після декількох епох. На 

тестовому наборі модель показала стабільно високі результати: точність для cooling 

складала 99.6%, pollen - 98.4%, varroa - 98.5%, wasps - 99.9%. Така швидка збіжність 

та високі показники точності свідчать про ефективність підходу трансферного 

навчання для даної задачі. CNN модель демонструвала більш поступову динаміку 

навчання, що є типовим для моделей, які навчаються з нуля. 

Результати дослідження підтверджують ефективність обох підходів, при 

цьому трансферне навчання з MobileNetV2 демонструє переваги у точності та 

швидкості навчання, тоді як спеціалізована згорткова нейрона мережа забезпечує 

гнучкість та контроль над процесом навчання. Після конвертації у формат tflite, 

об’єм моделі на основі MobileNet становив 8,9 МБ, а для моделі на основі згорткової 

нейронної мережі 255 КБ. В контексті використання навчених моделей на 

контролерах та мікрокомп’ютерах, значно більший об’єм моделі MobileNet може 

суттєво обмежити кількість підтримуваних пристроїв, в той час як розроблена 

згорткова нейронна мережа може забезпечити високий рівень ідентифікації стану 

бджіл навіть на пристроях з обмеженою внутрішньою пам’яттю. 

 

2.5 Висновки до другого розділу 

 

У другому розділі було проведено дослідження та розробку нейромережевих 

моделей візуальної ідентифікації бджіл та класифікації їх стану. Було проведено 

аналіз наукової літератури виявив ключові виклики галузі: складність 

позиціонування камер, обмеження освітлення та високі обчислювальні вимоги для 

обробки зображень. Результати порівняння п'яти архітектур нейронних мереж для 

ідентифікації об’єктів показало, що SSD MobileNet V2 забезпечує найкращий 
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баланс між точністю та повнотою з F1-метрикою 0.88, хоча й характеризується 

більшою кількістю хибно-позитивних спрацювань порівняно з Faster R-CNN. 

Дослідження методів покращення зображень продемонструвало, що алгоритм 

CLAHE значно підвищує стабільність результатів на пошкоджених наборах даних, 

досягаючи значення оцінки F1=0.845. Було досліджено ефективність застосування  

чорно-білого фільтру до зображень для ідентифікації бджіл з показником F1=0.90, 

що відкриває перспективи для систем моніторингу з інфрачервоним освітленням.  

Для вирішення задачі класифікації станів окремих бджіл було розроблено дві 

моделі. Спеціально розроблена згорткова нейронна мережа продемонструвала 

високу точність класифікації різних станів бджіл (охолодження – 97.1%, пилок – 

95.5%, варроа – 94.4%, оси – 99.1%) при меншому розмірі (502 КБ) порівняно з 

моделлю, створеною на основі трансферного навчання MobileNetV2 (8,9 МБ). 

Остання, хоча й показала вищі показники точності (охолодження - 99.6%, пилок - 

98.4%, варроа - 98.5%, оса - 99.9%), може бути обмежена у середі використання 

через високі вимоги до апаратних ресурсів. Компактність моделі на основі 

триступеневої згорткової нейронної мережі дозволяє її використання на 

мікроконтролерах з обмеженими ресурсами, що є важливою перевагою для 

автономних систем моніторингу.  

Таким чином, запропоновані підходи формують технологічну основу для 

розробки комплексних систем візуального моніторингу бджолиних вуликів, 

здатних ефективно функціонувати в умовах обмежених обчислювальних ресурсів 

та змінної якості вхідних зображень, а також підкреслюють можливості 

використання моделей нейронних мереж для визначення стану бджіл засобами 

візуального моніторингу. 

Основні наукові і практичні результати другого розділу опубліковано в 

роботах [70,72–74,76,77,80]. 
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 РОЗДІЛ 3 

МЕТОДИ ВИКОРИСТАННЯ НЕЙРОННИХ МЕРЕЖ ДЛЯ КЛАСИФІКАЦІЇ 

СТАНІВ БДЖОЛИНОЇ СІМ’Ї НА ОСНОВІ АКУСТИЧНИХ ДАНИХ 

 

 

3.1 Проблематика ідентифікації стану бджолиної сімʼї на основі 

аудіоданих 

 

Акустичний моніторинг може становити важливу частину систем 

моніторингу стану вулика. Встановлення мікрофонів всередині або поблизу вулика 

дозволяє збирати дані про акустичну активність бджолиної сім'ї в реальному часі 

або з високою періодичністю без необхідності відкривати вулик та турбувати бджіл. 

Стани бджолиної сім’ї мають виражені акустичні характеристики, які системи 

моніторингу можуть аналізувати засобами нейронних мереж [32]. Це, в свою чергу, 

відкриває можливості для раннього виявлення аномалій у поведінці та звуках 

колонії, що можуть свідчити про розвиток проблем, та забезпечує пасічника 

своєчасною інформацією для прийняття відповідних рішень. 

Здорова бджолина сім'я з присутньою плідною маткою характеризується 

певним акустичним фоном, який відображає її життєдіяльність. Основним звуком є 

загальний гул, що генерується сукупною вібрацією крил тисяч робочих бджіл. 

Основна частота дзижчання робочих бджіл зазвичай становить близько 255±35 Гц, 

а більшість звуків у вулику знаходяться в діапазоні від 100 Гц до 600 Гц, з 

характерними піками енергії близько 300 Гц, 410 Гц та 500 Гц [44,105]. Цей гул 

відображає загальний рівень активності, терморегуляцію та комунікаційні процеси 

в колонії. 

Відсутність матки призводить до помітних змін в акустиці вулика. Може 

спостерігатися зникнення специфічних сигналів, пов'язаних з присутністю матки, 

та зміни у загальному гулі, такі як посилення загального шуму протягом кількох 
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годин після втрати матки [43]. Дослідження вказують на зміни у звукових сигналах 

вже через годину після видалення матки [106]. 

Підготовка до роїння супроводжується характерними акустичними ознаками. 

До них належать поява або посилення специфічних звуків, що видаються матками, 

відомих як "спів" або "писк" (piping, tooting) [4]. Також спостерігається загальне 

підвищення амплітуди звуку у вулику та зміщення домінуючих частот у загальному 

гулі з діапазону 100-300 Гц до вищих значень, наприклад, 500-600 Гц, що пов'язано 

з інтенсивнішими помахами крил бджіл, які готуються до польоту [44,107]. 

Процес роїння характеризується максимальною інтенсивністю 

вищезазначених ознак: гучний "спів" маток, дуже високий рівень загальної 

активності та амплітуди звуку, зі зміщеними вгору домінуючими частотами [108]. 

Присутність шкідників, таких як кліщ Varroa destructor, або розвиток 

захворювань може викликати зміни в загальному акустичному фоні вулика. Хоча ці 

зміни можуть бути менш вираженими, ніж при роїнні чи втраті матки, стрес 

повʼязаний з присутністю шкідників може ослабити колонію, що шляхом аналізу 

звуку може виявити відхилення від норми, що вказують на проблеми зі здоров'ям 

колонії [44]. 

Застосування акустичного аналізу для ідентифікація стану бджолиного 

вулика є центральною темою багатьох досліджень за останні десятки років. З іншої 

сторони, використання нейронних мереж для ідентифікації стану вулика є відносно 

новою, але швидкозростаючою галуззю досліджень. Різноманітні архітектури 

нейронних мереж та методи машинного навчання продемонстрували значний 

потенціал у вирішенні завдань ідентифікації різних станів бджолиної сім'ї на основі 

акустичних даних. 

Авторами дослідження [7] було проведено систематичний огляд можливостей  

використання акустичних даних та нейронних мереж для ідентифікації стану 

відсутності матки. В дослідженні було застосовано різні методи аналізу 

аудіозаписів, зокрема: логістична регресія, багатошаровий персептрон та 

рекурентна мережа LSTM. В якості вхідних ознак використовувались мел-частотні 

кепстральні коефіцієнти. Дані, використані для навчання та тестування моделей, 
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являли собою аудіофайли тривалістю одна хвилина, записані з чотирьох вуликів 

двох підвидів бджіл, з двома станами: з наявною маткою та з відсутньою маткою. 

За результатами дослідження, LSTM мережа показала найвищу серед інших 

точність класифікації на рівні 92%, що підтверджує доцільність застосування 

LSTM для моніторингу стану відсутності матки у вулику шляхом аналізу 

акустичних даних. Крім отриманих результатів, авторами зазначено що акустичні 

сигнали, записані у різний час доби, демонструють різну спектральну дінаміку, що 

яка може бути використано для підвищення точності ідентифікації стану бджолиної 

сімʼї. 

У роботі [55] авторами проведено проведено порівняльний аналіз 

ефективності трьох класифікаційних алгоритмів: методу k-найближчих сусідів (k-

NN), методу опорних векторів (SVM) та спеціально адаптованої нейромережі U-Net 

CNN. Збір даних здійснювався через спеціально розроблені IoT-пристрої, оснащені 

мікрофонами, датчиками температури та вологості, встановленими у вуликах. 

Основною метою експерименту було дослідження можливості раннього (за 10-15 

днів до події) та пізнього (за 2-5 днів до події) визначення стану роїння за 

допомогою аналізу звукових записів. За результатами дослідження, метод k-NN 

забезпечив найкращу точність (98%) для пізнього визначення події роїння (за 5 днів 

до події), проте його точність знижувалася до 85% при спробі раннього виявлення 

(за 10 днів). В свою чергу модель на основі CNN U-Net показала результати з 

точністю 89% для раннього і 95% для пізнього визначення стану роїння, що 

підкреслює перспективність використання нейронних мереж для визначення станів 

на основі акустичних даних. 

У дослідженні [30] розглянуто створення системи автоматичної ідентифікації 

стану роїння шляхом аналізу звукових сигналів. Авторами використано 

аудіозаписи, отримані в рамках проекту Open Source Beehives. Особливістю роботи 

є аналіз впливу компресії аудіоданих на якість класифікації, що має значення для 

систем, де потрібно передавати великі обсяги даних через мережу. У якості ознак 

для класифікації було використано мел-частотні кепстральні коефіцієнти. 

Результати системи з глибокими нейронними мережами порівнювалися з 
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попередніми підходами на основі прихованих марковських моделей (HMM). DNN-

моделі продемонстрували суттєву перевагу, досягнувши точності 94,09%, тоді як 

найкращий результат з HMM становив 88,02%. Дослідження також показало 

значний вплив компресії аудіо на результати класифікації. При компресії з 

бітрейтом 64 кбіт/с точність DNN-моделей знижувалася майже на 5%, а при 24 

кбіт/с зниження становило вже більше 11%, досягаючи рівня нижчого, ніж у 

простіших HMM моделей. 

В іншому дослідженні [8] авторами використано методи машинного навчання 

та згорткові нейронні мережі для ідентифікації відсутності матки у вулику. 

Джерелом даних для цього дослідження слугували аудіозаписи проекту NU-Hive. 

Дослідниками було звернуто увагу на можливості використання моделей на нових 

вуликах, що не входили в навчальну вибірку. Використання згорткової нейронної 

мережі показало високу ефективність в аналізі даних з вуликів, на основі яких вона 

була навчена. Втім, у випадку роботи з іншими даними, ефективність роботи значно 

знижувалась, що підкреслює складнощі з узагальненням моделей на нові вулики. 

Практичні аспекти розміщення обладнання для збору акустичних даних 

розглянуті в дослідженні [109]. Авторами було використано систему на базі Arduino 

та мікрофоном типу MAX9814, що було розміщено всередині картонної коробки 

безпосередньо під верхньою кришкою. В роботі продемонстровано ефективність 

використання акустичного моніторингу вулика для відстеження стану занепокоєння 

бджіл. Окрім отриманих результатів, автори виокремлюють ряд практичних 

рекомендацій щодо розміщення обладнання. Так, було зафіксовано, що після 

проведення експерименту бджоли формували скупчення навколо пристрою, 

ймовірно, сприймаючи його як загрозу. Проблема розміщення мікрофону у вулику 

також була розглянута в роботі [31], автори якої підкреслюють ризик 

прополісування апаратури у випадку розміщення всередині вулика, що може значно 

вплинути на якість отриманих даних. 

Наведені дослідження демонструють актуальність використання акустичного 

аналізу та нейронних мереж для ідентифікації стану бджолиних сімей. Однак 

практична реалізація даного підходу стикається з рядом викликів. 
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Одним з основних обмежень є значний об’єм даних, що генерується під час 

запису. В залежності від якості запису, об’єм може сягати від 1 до 10 МБ за хвилину 

запису для одного мікрофону. Використання розширеного локального сховища 

дозволяє накопичувати ці дані, але вимагає регулярного втручання оператора для їх 

збору. В такому підході аналіз результатів відбувається лише після збору даних з 

системи моніторингу, що унеможливлює вчасне визначення стану вулика.  

Альтернативним підходом до проблеми об’єму даних є їх передача на 

віддалений сервер. Однак, цей підхід має суттєві недоліки: висока залежність від 

стабільного інтернет-з’єднання (що проблематично для віддалених пасік), витрати 

на передачу великих об’ємів даних та значне споживання електроенергії [110]. 

Через наведені обмеження, для мінімізації переданих даних доцільно 

проводити обчислення безпосередньо на моніторинговому пристрої. Базові 

згорткові нейронні мережі не потребують значних обчислювальних ресурсів і 

можуть працювати на портативних спеціалізованих пристроях. Складніші 

архітектури, як рекурентні нейронні мережі, можуть вимагати більше ресурсів 

процесору та пам’яті, що може обмежити кількість підтримуваних пристроїв [30].  

Ще однією проблемою пов’язаною з аналізом аудіоданих, зібраних в 

польових умовах, є схильність до впливу зовнішніх факторів, таких як шум дощу 

або звуки транспорту. Ці фактори можуть негативно вплинути на точність 

ідентифікації стану нейронною мережею. Існуючі дослідження показали 

ефективність застосування методів машинного навчання для ідентифікації таких 

аномалій [68]. 

Як і у випадку з використанням зображень для ідентифікації стану бджіл, 

висока варіативність даних також є актуальною проблемою у випадку використання 

акустичних даних. Крім можливих відмінностей у поведінці різних підвидів бджіл, 

може бути багато комбінацій розташування мікрофонів, їх типів та методів запису. 

Це призводить до того, що моделі, навчені на одному наборі даних можуть 

демонструвати суттєве зниження точності на іншому [8], або взагалі не давати 

значущого результату. Ключовою умовою створення універсальних моделей є 

навчання на даних з високою варіативністю, однак, як зазначають дослідники 
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[30,32], кількість якісних наборів акустичних даних у вільному доступі 

залишається обмеженою.  

В підрозділі 3.2 розглядається розробка нейронної мережі для ідентифікації 

стану вулика на основі акустичних даних, що враховує деякі аспекти наведених 

проблем. 

 

3.2 Моделі класифікації стану вулика на основі аудіоданих 

 

3.2.1 Підготовка даних 

У якості джерела даних для дослідження використовувався анотований 

датасет “To bee or not to bee” [111], що складається з двох наборів аудіоданих з Open 

Source Beehive (OSBH) [112], та NU-Hive [113]. Процес підготовки даних 

складається з чіткої послідовності дій, призначених для перетворення 

необроблених аудіозаписів з бджолиних вуликів на структуровані дані, придатні для 

подальшого використання в навчанні нейронних мереж. 

Цей процес починається з виділення та аналізу часових анотацій з файлів .lab, 

які містять важливі часові маркери, що вказують на певні періоди активності бджіл 

у кожному записі. Ці анотації аналізуються для виявлення сегментів, що 

представляють інтерес. Кожен такий сегмент класифікується відповідно до стану 

бджолиної сім’ї: присутня матка, відсутня матка, роїння та активний стан. Після 

обробки анотацій сирі аудіофайли сегментуються на основі цих часових маркерів. 

Отримані сегменти далі розбиваються на частини фіксованої довжини у 4 секунди, 

конвертуються у моно на основі лівого каналу, та зберігаються у форматі .wav з 

збереженням оригінальної якості звуку. Конвертація у моно є важливим кроком, 

адже переважна більшість інформації в знаходиться саме в лівому каналі 

початкових стерео даних, а також через спрощення подальшої роботи алгоритмів 

аналізу аудіо. Результатом попередньої обробки даних є організований набір даних 

з чіткою ієрархією, де теки, що відповідають станам на аудіозаписах, містять 

відповідні .wav файли довжиною у 4 секунди. Після застосування відповідних 
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методів виділення ознак, набори даних для навчання та тестування проходили 

процес балансування, щоб забезпечити однакове представлення характеристик під 

час навчання. 

 

3.2.2 Методи виділення ознак з аудіо даних 

Вибір оптимального набору акустичних ознак є важливим етапом, що суттєво 

впливає на ефективність та обчислювальну складність нейромережевих моделей. В 

роботі було використано два поширених методи виділення ознак з аудіо: 

спектрограми на основі короткочасного перетворення Фур’є та мел-частотні 

кепстральні коефіцієнти. 

Віконне перетворення Фур’є (STFT) це основна техніка обробки сигналів, що 

дає змогу аналізувати частотний та фазовий вміст локалізованих сегментів сигналу 

в міру його розвитку з часом. На відміну від стандартного перетворення Фур’є, яке 

забезпечує спектр вибірок повністю у часовій області, STFT обчислює 

послідовність перетворень Фур’є для коротких інтервалів, що дозволяє детально 

аналізувати варіації сигналу з часом [114]. В дослідженні було використано два 

підходи для генерації спектрограм: для їх створення для подальшого навчання 

моделей та для обчислення мел-кепстральних коефіцієнтів. В першому випадку, 

було застосовано наступний набір параметрів: розмір вікна 255, зсув вікна 32 та 

об’єм вибірки 44100. Візуалізацію роботи STFT на аудіоданих з обробленого набору 

даних OSBH наведено на рисунку 3.1. 
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Рисунок 3.1 Візуалізація акустичного фону бджіл у вигляді спектрограм STFT для 

різних класів 

 

Мел-частотні кепстральні коефіцієнти (MFCCs) - це один з основних способів 

виділення ознак, що широко використовується в різних сферах, таких як 

розпізнавання мови, ідентифікація мовця, та розпізнавання емоцій. MFCC 

охоплюють як високочастотні, так і низькочастотні характеристики роздільної 

здатності аудіосигналів, що робить їх цінними для розрізнення звуків. Крім того, 

MFCC менш схильні до впливу шуму навколишнього середовища, що природно 

зустрічаються в мові, та легко обчислювальні, що робить їх придатними для різних 

застосувань [115]. Для більшої інформативності спектрограми для отримання мел-

кепстральних коефіцієнтів було застосовано наступний набір параметрів: розмір 

вікна 1024, зсув вікна 256, розмір FFT 1024. Для генерації мел-кепстральних 

коефіцієнтів було використано наступні параметри: верхня частотна межа 7600 Гц, 

нижня частотна межа 80Гц та кількість мел-фільтрів 12. Приклад трансформованих 

у вигляд MFCCs аудіо даних наведено на рисунку 3.2. 
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Рисунок 3.2 Візуалізація акустичного фону бджіл у вигляді MFCCs для різних 

класів 

 

3.2.3 Навчання та результати моделі класифікації стану 

Для навчання моделей використовувалась однакова архітектура згорткової 

нейронної мережі, структура якої зображена на Рисунку 3.3. Вхідними даними цієї 

моделі слугують вилучені з аудіоданих ознаки. Архітектура включає вхідний шар, 

що приймає багатовимірні дані, які відповідають формі вхідних ознак. За ним 

слідує послідовність двох згорткових блоків, призначених для ієрархічного 

вилучення релевантних ознак. Перший блок включає згортковий шар з 16 

фільтрами розмірністю (3,3) та функцією активації ReLU. За ним розташований 

шар MaxPooling2D з вікном (2, 2), що зменшує просторову розмірність ознак. 

Другий згортковий блок має аналогічну структуру, проте використовує 32 

згорткових фільтри. Після етапу вилучення ознак, багатовимірні карти ознак 

трансформуються в одновимірний вектор засобами шару Flatten. Для регуляризації 

та запобігання перенавчанню до моделі включено шар Dropout з коефіцієнтом 0.4. 
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Далі вектор ознак обробляється повнозвʼязним шаром з 32 нейронами та 

активаційною функцією ReLU. Кінцевий класифікаційний шар містить кількість 

нейронів, що відповідає загальній кількості класів. 

 

 
Рисунок 3.3 Структура згорткової нейронної мережі 

 

Після побудови архітектури здійснюється етап компіляції моделі, що визначає 

параметри процесу навчання. В якості оптимізаційного алгоритму обрано 

адаптивний метод Adam. Параметр швидкості навчання за замовчуванням було 

встановлено у 0,0001. Функцією втрат для навчання моделі є 
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SparseCategoricalCrossentropy, що є стандартним вибором для задач багатокласової 

класифікації. Для моніторингу ефективності моделі під час навчання та валідації 

використовується метрика точності, яка обчислює частку правильно 

класифікованих прикладів. 

Набором даних для навчання перших моделей слугували аудіозаписи з набору 

OSBH. З них було вибрано тільки ті стани, що стосуються присутності або 

відсутності матки у вулику. Після балансування та розбиття даних на набори для 

навчання (80%) та тестування (20%), набори містили 538 та 180 входжень 

відповідно.  

Після навчання моделей, було виконано порівняння метрик результатів їх 

навчання та роботи на тестовій вибірці даних (Таблиця 1), що складала 20% від 

початкового набору даних. 

 

Таблиця 3.1 

Результати тренування та тестування моделей на наборі даних OSBH 

 Кількість 

епох 

Розмір 

групи 

Втрати 

навчання 

Точність 

навчання 

Втрати 

тестування 

Точність 

тестування 

STFT 30 12 0,11 0,10 0,95 0,96 

MFCCs 50 12 0,18 0,15 0,93 0,94 

 

Виходячи з наведених у Таблиці 1 результатів, можна сказати, що обидва 

методи успішно впоралися з задачею ідентифікації присутності матки у вулику. 

Використання методу MFCCs дозволило коректно ідентифікувати присутність 

бджолиної матки на 94% тестових аудіозаписів, а STFT показав трохи кращий 

результат у 96%. 

 

3.2.4 Адаптована модель ідентифікації станів на основі MFCCs 

Як видно з порівняння рисунків 3.1 та 3.2, застосування методу MFCCs 

дозволяє зменшити загальну кількість ознак, що використовуються нейронною 
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мережею для подальшої класифікації. Використання однакових архітектур не є 

доцільним, адже хоч нейронна мережа і може з великою точністю класифікувати 

стани в обох випадках, її кінцевий розмір може бути зменшений. Для навчання 

адаптованої під метод виділення ознак MFCCs моделі, було використано подібну 

архітектуру, але з вдвічі зменшеною кількістю згорткових фільтрів. Структуру 

меншої згорткової моделі наведено на рисунку 3.4 

 

 
Рисунок 3.4 Зменшена модель згорткової нейронної мережі. 

Наведена модель була навчена на основі даних з застосуванням методу 

виділення ознак MFCC протягом 10 епох, параметром розміру групи 12, та 
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швидкістю навчання 0,001. Аналіз роботи навченої моделі на тестовій вибірці 

показав значення метрики точності у 0,96, що відповідає рівню з використанням 

більшої згорткової нейронної мережі. Однією з основних переваг зменшеного 

розміру моделі є можливість її застосування в умовах обмежених обчислювальних 

ресурсів. 

 

3.2.5 Огляд ефективності навчання на вибірках різних розмірів 

Для навчання попередніх моделей було використано 718 аудіо файлів по 4 

секунди, що були розподілені у відношенні 80% набору для навчання та 20% для 

тестування. На основі цього можна припустити що 35 хвилин аудіозаписів 

достатньо для успішного навчання нейронної мережі. Однак, збір та аналіз такої 

кількості аудіоданих для навчання нейронної мережі може займати багато часу та 

не є оптимальним з точки зору практичного застосування. На основі цього можна 

зробити припущення що для навчання моделі може бути достатньо і значно 

меншого набору даних. В ході експерименту було використано попередню 

мініфіковану структуру згорткової нейронної мережі, моделі якої навчались на 

основі різних відношень розподілів даних. Для забезпечення оптимального рівня 

навчання було застосовано механізм ранньої зупинки, що відслідковував динаміку 

значення функції втрат та точності. В таблиці 3.2 наведено результати навчання цих 

моделей, що показують загальне зниження ефективності навчання при зменшенні 

кількості даних, але моделі, навчені на вдвічі меншому об’ємі даних, ніж попередні, 

не демонструють суттєвого зниження точності. Важливо зазначити, що зниження 

точності також може бути прямо пов’язане з збільшенням тестової вибірки, що в 

такому випадку може містити деякі входження, репрезентації яких немає в 

навчальній вибірці. 
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Таблиця 3.2 

Результати навчання моделей на різній кількості даних 

Відношення 

(навчальна/тестова) 

Кількість епох Розмір навчальної 

вибірки (файлів) 

Точність на 

тестовій вибірці 

80/20 (базовий) 10 538 0.95 

70/30 10 474 0,94 

60/40 10 422 0,93 

50/50 10 344 0,91 

40/60 10 286 0,92 

30/70 10 212 0,86 

20/80 10 146 0,88 

10/90 10 66 0,74 

5/95 10 34 0,61 

 

3.3 Метод доменної адаптації для класифікації стану бджолиної сімʼї 

 

В другому розділі для навчання моделей ідентифікації бджіл на зображенні 

було застосовано підхід трансферного навчання, в процесі якого відбувалося 

навчання вже навчених на датасеті COCO моделей. Одним з підрозділів 

трансферного навчання є доменна адаптація, де задачі у вихідному та цільовому 

доменах залишаються однаковими  але самі дані (домени) відрізняються. Метою 

доменної адаптації є розробка алгоритмів, здатних ефективно переносити знання, 

отримані з вихідного домену, для успішного функціонування в цільовому домені, 

незважаючи на ці відмінності.  Таким чином, доменна адаптація використовує 

принципи трансферного навчання для подолання зсуву домену, дозволяючи 

моделям, навченим на одному наборі даних, ефективно працювати з іншим, навіть 

якщо характеристики цих наборів даних суттєво різняться [116]. 

Основні проблеми, які може вирішити доменна адаптація в акустичному 

аналізі бджолиних сімей, включають відмінності у типах мікрофонів, їх 
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розташуванні відносно вулика, якості запису, а також варіативність акустичних 

умов середовища.  

Застосування доменної адаптації до задачі класифікації бджолиних звуків для 

ідентифікації присутності або відсутності матки може дозволити створювати 

універсальні моделі, здатні адаптуватися до різних умов запису та характеристик 

вуликів, що розширює можливості їх застосування без необхідності перенавчання 

з нуля для кожної нової ситуації. 

Для подальшого дослідження, було навчено моделі на наборі даних з Nu-Hive, 

що містить інформацію про присутність або відсутність матки, але має значно 

меншу кількість аудіоданих. Після балансування, для навчання моделі було 

використано 90 аудіо сегментів.  Результати навчання та використані параметри 

наведено у таблиці 3.3. Для навчання згорткової моделі, що використовує метод 

виділення ознак MFCC швидкість навчання становила 0,001. Наведені результати 

демонструють, що обидва методи виділення ознак успішно можуть ідентифікувати 

присутність або відсутність матки на цьому наборі даних. 

 

Таблиця 3.3 

Результати навчання моделей на вибірці даних Nu-Hive. 

 Кількість 

епох 

Розмір 

групи 

Втрати 

навчання 

Точність 

навчання 

Втрати 

тестування 

Точність 

тестування 

STFT 25 8 0,19 0,18 0.18 1 

MFCCs 20 4 0,18 0,14 0.14 1 

 

Хоч всі попередні навчені моделі і демонструють високий рівень точності у 

задачі класифікації станів, Їх застосування на даних з іншого набору даних не дає 

результату, що проілюстровано у таблиці 3.4. 

 

Таблиця 3.4 

Результати роботи моделей на даних, що не входили в навчальну вибірку 

 OSBH -> Nu-Hive Nu-Hive -> OSBH 
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 Значенння 

функції втрат 

Значення 

точності 

Значенння 

функції втрат 

Значення 

точності 

STFT 2,211 0,5 5.05 0,5 

MFCC 2,063 0,129 2,245 0,5 

 

Для реалізації доменної адаптації було використано навчені моделі Nu-Hive, 

що донавчались на частині даних з OSBH. Як показано в таблиці 3.2, навчання 

моделі з нуля при обмеженні навчальної вибірки більше ніж на 20% від загальної 

кількості початкових даних, призводить до зниження точності моделі. Ця проблема 

є доречним місцем для застосування методу доменної адаптації, оскільки цей метод 

дозволяє використовувати вже існуючі "знання" навчених моделей. З огляду на це, 

подальші моделі було навчено з використанням 5%, 10%, та 20% набору даних 

OSBH. Аналіз результатів та гіперпараметри наведено на таблиці 3.5. 

 

Таблиця 3.5 

Результати роботи моделей, навчених на частинах набору даних OSBH. 

   STFT MFCC 

 Розмір 

групи 

Кількість 

епох 

Значення 

функції 

втрат 

Точність Значення 

функції 

втрат 

Точність 

20% 4 40 0,24 0,88 0,23 0,91 

10% 4 40 0,23 0,79 0,18 0,88 

5% 4 40 0,25 0,82 0,35 0,83 

 

Згорткові моделі на основі MFCC ознак показали найкращі результати в усіх 

експериментах, досягнувши точності 0,91, 0,88 та 0,83 для наборів розміром 20%, 

10% та 5% відповідно. Порівняно з навчанням моделей з нуля (таблиця 3.2), 

доменна адаптація забезпечила вищу точність, що підтверджує доцільність цього 

підходу в умовах дефіциту даних. Хоча моделі на основі STFT також показали 
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позитивні результати, моделі на основі ознак MFCC продемонстрували кращу 

продуктивність для наведених обмежених навчальних наборів. 

Проведене дослідження продемонструвало високу ефективність згорткових 

нейронних мереж для ідентифікації стану бджолиної сім'ї на основі акустичних 

даних. Досягнуті показники точності класифікації, зокрема 94% для ознак MFCC 

та 96% для ознак STFT на тестовій вибірці з набору даних OSBH, узгоджувалися з 

результатами попередніх досліджень у цій галузі або навіть перевищували їх для 

аналогічних завдань. Наприклад, у роботі [7], на яку посилалися раніше, LSTM 

мережа показала точність 92% для ідентифікації відсутності матки, що є 

співставним з отриманими результатами. Варто зазначити, що успішне 

застосування методу доменної адаптації, яке дозволило досягти точності до 91% 

при донавчанні на значно меншій кількості даних з цільового домену, показало 

перспективний шлях для підвищення узагальнювальної здатності моделей, що є 

актуальною проблемою, піднятою, зокрема, у дослідженні [8], де наголошувалося 

на зниженні ефективності моделей на нових, не бачених раніше вуликах. 

Оптимізація архітектури нейронної мережі для ознак MFCC без суттєвої втрати 

точності також підкреслила можливість створення ефективних та менш вибагливих 

до обчислювальних ресурсів моделей для практичного застосування. 

Незважаючи на отримані позитивні результати, проведене дослідження мало 

певні обмеження, які важливо враховувати при інтерпретації його висновків та 

плануванні подальших робіт. Одним із ключових обмежень була відносна 

обмеженість використаних навчальних наборів даних. Хоча датасети OSBH та NU-

Hive надали достатньо матеріалу для первинної розробки та тестування моделей, 

використання переважно двох основних джерел даних не дозволило всебічно 

дослідити універсальність запропонованих методів та їхню стійкість до значно 

ширшого спектру акустичних умов, типів вуликів та порід бджіл. У цьому 

контексті, хоча застосовані методи доменної адаптації частково вирішували 

проблему ефективності моделей на незнайомих даних, було відзначено, що 

індивідуально навчені моделі за умови наявності достатнього обсягу 

репрезентативних даних з цільового домену демонстрували високі показники 
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точності. Це вказувало на те, що для досягнення максимальної надійності в 

різноманітних умовах перевагу все ж таки мали б моделі, навчені на великих та 

варіативних наборах даних, специфічних для конкретних умов експлуатації, або ж 

більш просунуті методи адаптації. 

Крім того, дане дослідження не передбачало систематичного аналізу впливу 

низки зовнішніх та часових факторів на акустичні характеристики бджолиної сім'ї 

та, відповідно, на точність класифікації її станів. Такі фактори, як конкретний час 

доби, сезон року, поточна температура та вологість навколишнього середовища, а 

також загальний стан активності вулика, не були окремо виділені та контрольовані 

в рамках експерименту. Як зазначається в роботі [49], їх врахування потенційно 

могло б допомогти у виявленні та більш точній ідентифікації певних станів 

бджолиної сім'ї. 

 

3.4 Висновки до третього розділу 

 

В третьому розділі було здійснено огляд сучасного стану проблеми 

акустичного моніторингу вуликів та обґрунтовано доцільність використання 

нейромережевих підходів. В рамках експериментальної частини було розроблено та 

протестовано згорткові нейронні мережі для класифікації аудіосигналів з 

використанням мел-частотних кепстральних коефіцієнтів (MFCC) та спектрограм 

на основі короткочасного перетворення Фур’є (STFT) як вхідних ознак. Навчені на 

датасеті OSBH моделі продемонстрували високу ефективність, досягнувши 

точності 94% для MFCC та 96% для STFT на тестовій вибірці. Також було показано 

можливість оптимізації архітектури для MFCC ознак, що дозволило зберегти 

високу точність при зменшенні розміру моделі, що є важливим для реалізації на 

пристроях з обмеженими ресурсами. Досліджено вплив обсягу навчальних даних, 

підтвердивши, що навіть зі зменшеною вибіркою моделі зберігають задовільну 

точність. Також, було емпірично підтверджено наявність проблеми зсуву домену: 

моделі, навчені на одному наборі даних, показали суттєве зниження точності при їх 

застосуванні до даних з іншого набору без додаткової адаптації. Це вказало на 
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необхідність розробки механізмів адаптації для забезпечення практичної 

застосовності розроблених моделей у різноманітних реальних умовах.  

Ключовим результатом розділу стала успішна апробація та демонстрація 

ефективності методу доменної адаптації для подолання вищезгаданої проблеми. 

Шляхом донавчання моделей, попередньо навчених на датасеті Nu-Hive, на 

невеликих частках (5%, 10% та 20%) даних з цільового датасету OSBH, вдалося 

значно підвищити точність класифікації. Моделі, що використовували MFCC 

ознаки, показали найкращі результати, досягнувши точності 91% при донавчанні 

на 20% даних OSBH, 88% на 10%, та 83% на 5% даних. Ці показники перевищують 

точність моделей, навчених "з нуля" на аналогічно малих обсягах даних. 

Проведені в третьому розділі дослідження не лише підтвердили потенціал 

згорткових нейронних мереж для задачі акустичної ідентифікації стану бджолиної 

сім'ї, але також продемонстрували важливу роль доменної адаптації у підвищенні 

надійності та універсальності таких систем в умовах обмежених даних. Це 

відкриває перспективи для створення більш стійких та практично придатних 

інструментів для пасічників. 

Основні наукові і практичні результати даного розділу опубліковано в роботах 

[69,79] 
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 РОЗДІЛ 4  

ЗАСТОСУВАННЯ ПІДХОДІВ ТОЧНОГО БДЖІЛЬНИЦТВА ТА 

НЕЙРОННИХ МЕРЕЖ ДЛЯ ІДЕНТИФІКАЦІЇ СТАНІВ ТА ПОДІЙ У 

ВУЛИКУ 

 

 

4.1 Проблематика застосування сенсорних технологій та 

нейромережевих методів у системах моніторингу бджолиних вуликів 

 

4.1.1 Теоретичні засади застосування сенсорних технологій та 

нейромережевих методів у системах моніторингу бджолиних вуликів 

 

Розвиток цифрових технологій та удосконалення сенсорних пристроїв 

відкривають нові можливості для їх застосування у бджільництві. Впровадження 

спеціалізованих систем моніторингу, що базуються на використанні різноманітних 

датчиків та засобів обробки даних, дозволяє забезпечити пасічника актуальною 

інформацією про поточний стан бджолиної сім'ї. Такий підхід суттєво спрощує 

діяльність бджоляра, підвищує ефективність управління пасікою та створює 

можливості для своєчасного реагування на критичні стани колонії. 

Застосування сенсорних технологій у поєднанні з методами машинного 

навчання, зокрема нейронними мережами, є перспективним напрямом сучасних 

досліджень у сфері бджільництва. Інтеграція цих технологій дозволяє не лише 

здійснювати безперервний моніторинг важливих параметрів колонії, але також 

автоматизувати процеси аналізу великих обсягів даних для виявлення складних 

закономірностей у поведінці та фізіологічному стані бджолиних сімей. 

У цьому контексті набуває поширення концепція "точного бджільництва". 

Цей термін був значною мірою популяризований завдяки працям *A. Zaepnic*, який 

разом зі співавторами одними з перших сформулювали його визначення, 
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акцентуючи увагу на засобах Інтернету речей (IoT) для збору даних на локальному 

рівні окремих вуликів та пасік [65]. 

Впровадження точного бджільництва зазвичай включає три основні етапи: 

збір даних, аналіз (або обробка) даних та застосування отриманих результатів (або 

виведення даних). Ключовою метою є забезпечення безперервного моніторингу 

бджолиних сімей у режимі реального часу за допомогою автоматизованих рішень, 

що базуються на інформаційних технологіях, не завдаючи бджолам зайвого стресу. 

Цей підхід знаменує собою фундаментальний зсув парадигми від переважно 

реактивного, заснованого на досвіді, ведення бджільництва до проактивного 

управління, що спирається на об'єктивні дані. Така трансформація стала можливою 

завдяки зростаючій доступності сенсорних технологій, мікроконтролерів та засобів 

обробки даних. 

 

4.1.2. Класифікація станів бджолиної сім'ї за даними сенсорного 

моніторингу 

 

Як було оглянуто в першому розділі, бджолина сім’я представляє собою 

складну біологічну систему, функціонування якої характеризується множиною 

взаємопов'язаних фізіологічних та поведінкових параметрів. Ідентифікація різних 

станів бджолиної сім'ї потребує комплексного моніторингу ключових 

характеристик, що відображають зміни у життєдіяльності колонії. Серед інших 

можливих станів, використання датчиків може допомогти ідентифікувати наступні: 

• Стан роїння характеризується специфічними змінами температурного 

режиму вулика та динаміки маси колонії. Під час підготовки до роїння 

спостерігається підвищення температури у зоні розводу розплоду до 36-37°C, що 

пов'язано з інтенсифікацією метаболічних процесів. Одночасно відбувається 

поступове зменшення маси вулика внаслідок зменшення кількості бджіл та 

споживання кормових запасів. 
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• Загибель колонії характеризується встановленням температурного 

еквілібріуму з навколишнім середовищем та відсутністю динамічних змін маси 

вулика. За відсутності життєдіяльності бджіл температура всередині вулика 

поступово зрівнюється з зовнішньою температурою, а маса залишається 

стабільною через припинення процесів збору нектару та виділення вологи. 

• Нормальна життєдіяльність колонії та медозбір протягом доби 

характеризуються циклічними змінами температури, вологості та маси вулика, що 

відображають природні ритми активності бджіл. Денна активність 

супроводжується підвищенням температури та збільшенням маси за рахунок 

принесеного нектару, тоді як нічна активність характеризується стабілізацією цих 

параметрів. 

• Вихід з зимівлі характеризується поступовим підвищенням 

внутрішньої температури вулика протягом декількох діб. Цей процес відбувається 

при стабілізації сприятливих температурних умов навколишнього середовища та 

варіює залежно від географічного розташування вуликів та видової приналежності 

бджіл. 

Додатково, можна виділити наступні стани, пов’язанні з втручанням людини: 

• Вилучення медових рамок - цей стан характеризується різким та 

значним зменшенням ваги вулика протягом короткого періоду часу, що є прямим 

наслідком планового втручання пасічника з метою збору врожаю меду. Процес 

відбувається зазвичай у період головного медозбору (червень-серпень) або після 

його завершення, коли медові рамки наповнені запечатаним медом. Пасічник 

вилучає рамки з верхніх корпусів або магазинних надставок, залишаючи бджолиній 

сім'ї достатню кількість кормових запасів для власних потреб. Зменшення ваги 

може становити від кількох кілограмів до десятків кілограмів залежно від сили сім'ї 

та врожайності сезону. Цей процес супроводжується короткочасним стресом для 

бджолиної колонії, але при правильному виконанні не завдає шкоди розвитку сім'ї. 

• Додавання прикорму - характеризується раптовим збільшенням маси 

вулика внаслідок цілеспрямованого втручання пасічника, який забезпечує 

бджолину сім'ю додатковим кормом у вигляді цукрового сиропу, медово-цукрового 
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тіста або інших кормових сумішей. Такий стан найчастіше спостерігається у 

періоди недостатнього природного медозбору (весняний період, посушливе літо, 

пізня осінь), під час підготовки сімей до зимівлі або при стимулюючому підгодівлі 

для активізації яйцекладки матки. Збільшення маси може відбуватися поступово 

протягом кількох днів або різко - за одну годівлю, залежно від методу та об'єму 

прикорму. Пасічники ретельно контролюють цей процес, оскільки правильна 

підгодівля є критично важливою для виживання сім'ї у несприятливі періоди та 

успішної зимівлі. 

Важливо зазначити, що у випадку роботи з короткими проміжками часових 

даних слід враховувати специфіку процесу виконаних робіт. Для огляду вулика та 

маніпуляцій в ньому пасічнику необхідно спершу зняти кришку, що може мати 

вплив на вагові та температурні характеристики вулика. Цей фактор особливо 

важливий під час роботи з даними з секундними та хвилинними інтервалами. 

 

4.1.3 Детальний огляд ключових сенсорів 

 

Для ефективного моніторингу стану бджолиного вулика може бути 

використаний широкий спектр сенсорних пристроїв, що дозволяють відстежувати 

фізико-хімічні та поведінкові характеристики колонії. Кожен тип сенсора надає дані 

про специфічні аспекти середовища вулика або активності бджіл. Комплексне 

використання різних сенсорів дає змогу отримати цілісне уявлення про стан 

бджолиної сім'ї. Важливо розуміти, що багато параметрів у вулику взаємопов'язані. 

Наприклад, процес роїння супроводжується змінами у внутрішньовуликовій 

активності, температурному режимі та вазі вулика. Температура та вологість є 

критичними для розвитку розплоду та загального здоров'я колонії. Ця 

взаємозалежність підкреслює необхідність застосування мультисенсорних систем, 

оскільки моніторинг лише одного параметра може надати неповну або навіть 

неоднозначну картину стану сім'ї. Для отримання повноцінної інформації про стан 

моніторингу сенсори можуть одночасно розміщуватись всередині вулика та на 

зовнішніх поверхнях. 
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Сенсори температури та вологості є одними з найбільш поширених у 

системах моніторингу вуликів. Сенсори серії DHT забезпечують базові дані про 

мікроклімат всередині вулика, вимірюючи температуру та вологість. Сенсор DHT11 

характеризується діапазоном вимірювання температури від 0°C до +50°C з 

точністю ±2°C та вологості від 20% до 90% з точністю ±5%. DHT22 забезпечує 

вищу точність вимірювання температури (±0.5°C) у розширеному діапазоні (-40°C 

до +80°C) та вологості (±2-5%). Однією з проблем у використанні сенсорів серії 

DHT є ризик прополісування захисної сітки датчика, що  може призвести до 

зниження точності вимірювань [117]. 

Іншим популярним сенсором для вимірювання температури є цифровий 

термосенсор DS18B20. На відміну від сенсорів серії DHT, ці сенсори мають захист 

від вологи та, завдяки своїй формі, можуть бути вмонтовані в рамки та корпус 

вулику. Деякі дослідники також повідомляли що сенсори DS18B20 мають значно 

менший ризик прополісування бджолами, що може бути значною перевагою 

використання цього сенсора порівняно з іншими. DS18B20 забезпечує 

температурні вимірювання з точністю ±0.5°C у діапазоні -55°C до +125°C. 

Інтегрований сенсор BME280 поєднує функції вимірювання температури, 

вологості та атмосферного тиску з високою точністю (±1°C, ±3% відносної 

вологості, ±1 гПа тиску). Порівняно з DHT-сенсорами, BME280 характеризується 

вищим енергоспоживанням та більшою стабільністю роботи [118].  

 

4.1.4 Аналіз сучасного стану досліджень у галузі точного бджільництва 

 

Використання сенсорів для моніторингу вулика є центральною темою 

багатьох досліджень. Значний внесок в дослідження використання температурних 

даних для ідентифікації стану вулика було зроблено дослідником Zacepins та 

співавторами. У дослідженні [62] було запропоновано метод віддаленого виявлення 

роїння бджолиних сімей на основі моніторингу температури в одній точці. Основна 

мета роботи полягала у визначенні температурних патернів, характерних для 

процесу роїння, та створенні автоматизованого алгоритму для їх ідентифікації. 
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Дослідження проводилося на десяти вуликах протягом чотирьох місяців, протягом 

яких було зафіксовано дев'ять випадків роїння. Виявлено, що безпосередньо перед 

вильотом рою температура у вулику зростає на 1,5-3,4 °C протягом 8-20 хвилин. 

Авторами було запропоновано алгоритм, який використовує температурні 

показники, отримані за допомогою одного сенсора, встановленого над верхньою 

частиною вулика, що дозволяє оперативно та дистанційно виявляти початок 

процесу роїння. В іншому дослідженні [119], авторами розглянуто цифрову систему 

для віддаленого моніторингу стану бджолиних сімей. Основна мета системи - 

автоматизоване визначення стану бджолиних колоній через реєстрацію вагових 

показників та температури. Для вимірювання ваги використано тензометричний 

датчик з максимальною вантажопідйомністю до 200 кг, а також додаткові датчики 

для контролю внутрішньої температури вулика та зовнішніх умов (вологості й 

температури). 

У роботі [42] представлено систему моніторингу та автоматизації пасік на 

основі технологій IoT. Розроблена система призначена для збору й аналізу таких 

параметрів, як температура, вологість, вага вулика та частота звукового сигналу, а 

також контролює статус відкриття кришки та дверцят для регулювання 

температури. Система базується на мікроконтролері Arduino Pro Mini з передачею 

даних за допомогою протоколу Modbus через інтерфейс RS-485. Як сервер 

використовується Raspberry Pi 4, що дозволяє обробляти та зберігати дані, 

надсилати сповіщення та надавати доступ до веб-інтерфейсу. Серед основних 

проблем, з якими зіткнулися дослідники, було забезпечення стабільного зв'язку з 

серверами в умовах сільської місцевості зі слабким інтернет-покриттям. Для 

подолання цієї перешкоди було вирішено використовувати локальний сервер із 

SIM-картою, який дозволяє передавати дані навіть за умов низької швидкості 

мобільного зв'язку. Подібний підхід до вирішення проблеми комунікації було також 

запропоновано в роботі [38]. В дослідженні було представлено мультисенсорну 

платформу для моніторингу стану бджолиних вуликів на базі інтелектуальних 

датчиків. Запропонована система дозволяє здійснювати реєстрацію ваги вулика на 

основі мосту Уінстона, температури, вологості на основі датчику DHT22, звукових 
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сигналів бджіл та концентрації CO2 всередині вулика, а також зовнішніх погодних 

умов. В запропонованій системі дані з окремих вуликів передаються на окремий 

модуль на основі Raspberry Pi, що в свою чергу відповідає за комунікацію з 

віддаленим сервером. 

Використання нейронних мереж та підходів точного бджільництва також 

отримує багато уваги за останні роки. У роботі [11] досліджується застосування 

нейронних мереж для автоматизованого моніторингу стану медоносних бджіл 

шляхом аналізу температурних даних. Авторами розроблено нейромережеву 

модель для ідентифікації двох важливих станів у житті бджолиних сімей: початку 

періоду розплоду та процесу роїння. Використання температурних шаблонів 

дозволило нейронним мережам ефективно розпізнавати ці стани, демонструючи 

потенціал у покращенні управління пасіками завдяки автоматизованому і точному 

моніторингу. 

У статті [9] розглядається розробка низьковартісного, енергоефективного 

мультисенсорного пристрою для моніторингу стану бджолиних сімей, який 

дозволяє здійснювати передбачення багатовимірних часових рядів. Пристрій 

інтегрує синхронні вимірювання ваги, газових параметрів (CO2, TVOC), вібрацій, 

температури, вологості, а також підрахунок бджіл, що входять та виходять із вулика. 

Дані передаються через бездротовий зв'язок на хмарний сервер. Автори акцентують 

увагу на створенні економічного рішення з низьким споживанням енергії, що 

важливо для довгострокового моніторингу у віддалених місцях. Для аналізу 

отриманих даних використовується модель прогнозування на основі 

багатовимірних часових рядів, що дозволяє виявляти аномалії у стані бджолиної 

сім'ї на ранніх етапах та забезпечує оперативне реагування на можливі загрози. 

У дослідженні [50] запропоновано модель для оцінки впливу кліматичних 

даних на вулик безжальних бджіл та розробки точної короткострокової моделі 

прогнозування ваги вулика. Для цього було зібрано дані з одного вулика протягом 

~36 годин з інтервалом у сім секунд, що включали вагу вулика, температуру та 

вологість всередині та ззовні, точку роси та кількість бджіл. Автори використали 

рекурентні нейронні мережі (RNN), зокрема Long Short-Term Memory (LSTM) та 
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Gated Recurrent Units (GRU), для аналізу та прогнозування, тестуючи різні 

архітектури та розміри вікон прогнозування. На основі аналізу встановлено, що 

вага вулика сильно корелює з внутрішньою та зовнішньою температурою. Серед 

порівнюваних в роботі архітектур нейронних мереж, модель на основі LSTM 1x50 

з вікном прогнозування в 1 хвилину, показала найкращий результат з значенням 

помилки RMSE 0.012. 

У дослідженні [66] запропоновано інтегровану IoT-систему моніторингу 

активності бджіл, що включає апаратний комплекс для збору мультисенсорних 

даних, хмарну інфраструктуру та веб-додаток для відображення поточних і 

прогнозованих станів. Система реєструє широкий спектр параметрів як всередині 

вулика, так і ззовні . Центральна одиниця на базі Arduino Mega та ESP32 передає 

дані через мобільну мережу на сервер, де вони зберігаються, обробляються і 

використовуються для побудови моделей прогнозування руху бджіл на вході/виході. 

Для прогнозування було випробувано ARIMA, Facebook Prophet та LSTM, де 

останній показав найкращі результати. Система генерує аналітичні та прогнозні 

тривоги у реальному часі та дозволяє пасічникам вчасно реагувати на зміни стану 

вулика. 

Попри зростаючий обсяг наукових праць, спрямованих на розпізнавання 

станів бджолиних вуликів за допомогою технологій нейронних мереж, 

спостерігається недостатня кількість досліджень, які б комплексно підходили до 

ідентифікації широкого спектру поведінкових станів колонії з інтеграцією набору 

параметрів систем моніторингу на основі сенсорів. Це можна пов’язати з низкою 

проблем, характерних для таких досліджень. Моделі глибокого машинного 

навчання потребують великих обсягів якісних розмічених даних для ефективного 

тренування та узагальнення, збір та аналіз яких може тривати роками та бути 

ресурсовитратним. 

Правильне розміщення сенсорів всередині вулику є комплексною задачею, 

для якої потрібне враховувати розмір розміщуваних датчиків [45], їх оптимальне 

положення [120], а також враховувати проблему прополісування. Бджоли схильні 

покривати невідомі предмети воском, що у випадку сенсорів що може суттєво 
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погіршити або повністю заблокувати їхню роботу [66]. Дослідники підходили до 

цієї проблеми використовуючи захист сенсорів металевою сіткою [121], або шляхом 

додаткової структурної модифікації вулика для розміщення сенсорів всередині. 

Важливим фактором що треба враховувати під час планування розміщення 

апаратури у вулику є також її термальні характеристики. Деякі сенсори для 

вимірювання характеристик повітря, як MQ135, потребують попереднього нагріву 

для коректної роботи. Контролери та мікрокомп’ютери також мають властивість 

нагріватись під час активної роботи та обробки даних з сенсорів. У випадку 

розміщення всередині вулика, підвищена температура сенсорів та контролерів 

може негативно вплинути на термальний баланс бджолиної сім’ї та якість 

отриманих даних. 

Забезпечення безперебійного живлення для віддалених сенсорів є значним 

викликом, оскільки тривалість роботи батарей обмежена. Поширеним рішенням є 

використання батарей в комбінації з сонячними панелями для збору енергії . Також 

застосовуються стратегії управління енергоспоживанням, такі як режими глибокого 

сну та відключення невикористовуваних периферійних пристроїв. Існуючі 

дослідження споживання енергії в задачі моніторингу вулика [110] зазначають, що 

виконання обчислюваних операцій на мікрокомп’ютерах сильно підвищує їх 

енергоспоживання. Це може обмежити можливості використання моделей 

нейронних мереж безпосередньо "на вулику", адже вони можуть потребувати 

значних обчислювальних ресурсів протягом тривалого часу. Значний вплив на 

споживання енергії також має передача даних, де Wi-Fi, за результатами 

дослідження, може споживати майже вдвічі більше енергії (93,3 Дж) порівняно з 

Ethernet (42,5 Дж). Хоча Ethernet і споживає менше енергії, його використання у 

віддалених системах моніторингу не є доречним через відсутність необхідної 

мережевої інфраструктури. Режим глибокого сну контролеру також має значний 

вплив на електроспоживання. Мікрокомп’ютери, як Raspberry Pi, хоч і мають 

можливість переходу в режим енергозбереження, можуть потребувати значно 

більше енергії за мікроконтролери, що адаптовані до умов роботи з низьким 

енергозабезпеченням. Одним з важливих факторів відмічених у дослідженні [110] 
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є підключення контролеру Arduino через поширений стандарт USB 2, що потребує 

для коректної роботи фіксованої вартості енергії у приблизно 0,5 Вт, навіть коли 

система перебуває в режимі очікування. Системи, запропоновані в роботах [38,42], 

частково вирішують проблему енергоспоживання на рівні індивідуальних вуликів 

шляхом використання локальних контролерів виключно для передачі інформації з 

сенсорів на потужніший комп’ютер, що в свою чергу виконує обробку отриманих 

даних. Для мінімізації енерговитрат на етапі передачі даних, ці системи 

використовують спеціальні протоколи та модулі, що дозволяють передавати 

невеликі об’єми даних витрачаючи меншу кількість енергії. 

Сенсори, розміщені у вуликах, піддаються впливу зовнішніх погодних умов 

(дощ, екстремальні температури, вологість), що може призвести до їх пошкодження 

або погіршення якості даних. Для захисту використовуються спеціальні корпуси 

вуликів [39],  кабельні ущільнювачі для герметизації проводів та герметичні 

контейнери для інших елементів. Важливим є калібрування сенсорів для 

врахування впливу змінних навколишнього середовища, таких як температура та 

вологість. Точність значень деяких сенсорів, як тензодатчики, може змінюватись в 

залежні від температурних умов, вітру та опадів [120]. 

Обмежені обчислювальні потужності периферійних пристроїв накладають 

суттєві обмеження на складність алгоритмів обробки даних та моделей нейронних 

мереж. Це вимагає розробки оптимізованих нейромережевих архітектур, 

застосування граничних обчислень з передачею лише агрегованих даних на 

центральний сервер [30]. Практичним також може бути використання гібридного 

підходу, що включає в себе елементи обох підходів. 

У реальних умовах розгортання сенсорних систем часто трапляються 

випадки втрати даних через проблеми з живленням, зв'язком або несправністю 

самих сенсорів.  Хоча методи інтерполяції дозволяють заповнити прогалини в 

даних, вибір конкретного методу може суттєво вплинути на сприйняття часової 

динаміки даних, потенційно погіршуючи ефективність моделей, чутливих до 

часових змін, таких як LSTM. Надто спрощена інтерполяція може "згладити" 

критичні короткочасні події. Якщо критична, короткотривала подія (наприклад, 
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короткий температурний стрибок, що вказує на проблему) відбувається під час 

пропуску даних, інтерполяція може її приховати. Вибір методу відновлення даних 

повинен ретельно розглядатися з урахуванням типів подій, що відстежуються, та 

використовуваних моделей. 

 

4.2 Нейромережеві моделі ідентифікації станів та подій бджолиного 

вулику 

 

4.2.1 Рекурентна мережа  LSTM для аналізу часових рядів 

 

При розробці моделей ідентифікації стану бджолиної сімʼї на основі даних з 

сенсорів застосовується підхід аналізу часових рядів. Основою подальших моделей 

нейронних мереж слугує архітектура LSTM, що є доречним вибором для аналізу 

часових рядів. Застосування цієї архітектури показало ефективність у передбаченні 

станів бджіл. 

Long Short-Term Memory (LSTM) є різновидом рекурентних нейронних 

мереж, спеціально розроблених для ефективного моделювання довготривалих 

залежностей у послідовних даних.  Архітектура LSTM використовує спеціальні 

блоки, так звані комірки пам'яті (memory cells), та вентилі (вхідний, вихідний та 

вентиль забування), що контролюють потік інформації. Це дозволяє їм навчатися 

довгостроковим залежностям у даних та долати проблеми зникаючих або 

вибухаючих градієнтів, характерні для традиційних RNN. Стан комірки діє як 

"конвеєрна стрічка", що переносить інформацію через послідовність блоків. LSTM 

обробляють дані послідовно, оновлюючи стан комірки та прихований стан на 

кожному часовому кроці на основі поточного вхідного сигналу та попередніх 

станів. Це дозволяє їм фіксувати часові патерни, що є критично важливим для 

аналізу сенсорних даних, таких як коливання температури або послідовності 

акустичних подій [48,104]. 
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У контексті ідентифікації стану бджолиного вулика шари LSTM можуть бути 

ефективно використані для аналізу часових рядів, отриманих з різних сенсорів, 

таких як акустичні, температурні або вагові датчики, що дозволяє виявляти 

довготривалі патерни, характерні для різних станів вулика [7]. 

Окрім простого виявлення поточного стану, значний інтерес представляє 

можливість прогнозування майбутніх подій у вулику. Деякі дослідження вже 

демонструють потенціал нейронних мереж для прогнозування стану роїння на 

основі аналізу динаміки температури, що відкриває шлях до створення систем 

раннього попередження [49]. Моделі, здатні вивчати часову динаміку, такі як LSTM, 

є ключовими для реалізації таких прогностичних можливостей. 

Важливим напрямом є поєднання різних типів нейронних мереж та 

модальностей даних для покращення точності діагностики. У деяких роботах 

використовують гібридні моделі CNN-LSTM, де згорткова мережа виокремлює 

просторові ознаки (наприклад, зображення чи спектрограми), а рекурентна - 

аналізує їхню часову динаміку [122]. 

Здатність LSTM обробляти послідовності змінної довжини та фіксувати 

довгострокові залежності робить їх особливо придатними для моніторингу вуликів, 

де події можуть розвиватися протягом різних проміжків часу, а дані можуть мати 

пропуски або нерегулярну дискретизацію. Їх "відносна нечутливість до довжини 

проміжку" є ключовою перевагою при роботі з реальними сенсорними даними, які 

можуть бути неідеальними. 

 

4.2.2 Аналіз та обробка набору даних 

 

В якості джерела даних для навчання моделі було використано відкритий 

набір даних [123], що містить хронологічні записи похвилинних показників 

сенсорних пристроїв, зібраних з 78 вуликів медоносних бджіл у різних місцях 

Німеччини в період з 2019 по 2022 рік. В межах дослідження по збору даних для 

кожної бджолиної сім’ї було встановлено комплекс сенсорів, що включав: 
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• П’ять цифрових датчиків температури DS18B20, розміщених у 

кожному другому проміжку між рамками всередині вулика, та один датчик 

DS18B20 для вимірювання зовнішньої температури. 

• Комбінований датчик (BME280), розташований у проміжку між 

рамками, що вимірював відносну вологість, атмосферний тиск та додаткову 

температуру всередині вулика. 

• Тензодатчик (Bosche H30 або H40) разом із підсилювачем HX711, 

встановлений під вуликом для вимірювання загальної ваги. 

Даний набір сенсорів знімав показники з інтервалом від 5 до 10 секунд. 

Дослідниками також було проведено документацію та анотування подій та станів, 

що відбувались у вулику. В наборі даних присутня інформація про стани роїння, 

підгодовування, наявності маточників, огляду вулика пасічником, смерті колонії. В 

датасеті надано три набори: сирі дані з вихідним інтервалом вимірювання, 

агреговані дані з усередненням за хвилину, годину та день, та оброблені дані з 

корекцією ваги та ключовими метаданими щодо станів вулику. 

У процесі первинного аналізу даних було виявлено певні недоліки зі 

стабільністю значень, періодів з відсутніми даними та систематичні помилки 

зчитувань сенсорів у вигляді екстремальних (максимальних або мінімальних) 

значень. На візуалізації рис 4.1 видно, що в даних присутні місця з відсутніми 

даними, а також періодично відсутні дані з сенсорів. 
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Рисунок 4.1 Приклад оброблених даних вулику з набору: температурні дані 

(зверху) та вагові (знизу) 

 

Для адаптації до цих недоліків було створено допоміжний файл метаданих.  

Цей файл містить специфікацію часових діапазонів протягом яких дані 

демонстрували стабільність, перелік подій що відбувались у цьому діапазоні, а 

також перелік сенсорів для фільтрації. Для подальшої роботи важливо мати 

стабільні дані, тому сенсори, що містять тривалі пробіли в записах, будуть 

ігноруватись.  

Для спрощення роботи зі станами та візуалізацією, було проведено міграцію 

інформації про стани з початкових файлів до метаданих, із зазначенням точного 

часу для кожного запису. Початкові дані також містили інформацію про час коли 

відбувались події у вулику, але іноді мали зрушення за часом та були внесені для 

кожного запису у форматі часу до наступної події, що вимагало додаткової корекції 

цих міток. 

Методологічно важливим є те, що точкові події, такі як роїння, були 

представлені в файлі метаданих однією датою, тоді як для глобальних станів, таких 

як медозбір або колапс колонії, було застосовано підхід циклічної реєстрації з 

періодичністю 25 годин. Візуалізацію відрізку з глобальними станами наведено на 
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рис. 4.2. Сформований у результаті файл містить 64 часові діапазони, що забезпечує 

статистично значущу вибірку для побудови та валідації моделей. 

 

 
Рисунок 4.2 Візуалізація відрізку даних, з глобальним станом колапсу колонії 

 

В дослідженні [119] авторами було розроблено платформу для моніторингу 

бджіл на основі даних про вагу та температуру, а також розглянуто оптимальні 

періодичності отримання цих значень з ціллю ідентифікації станів. Дослідники 

зазначають, що для ідентифікації більшості станів вулику може бути достатньо 

отримувати дані від 1 разу на годину до одного разу на день, в залежності від 

цільових станів. Однак, рекомендовані інтервали, що дозволять вчасну 

ідентифікацію цих станів, можуть бути іншими. Для вчасної ідентифікації подій, 

автори рекомендують отримувати дані про вагу кожні 30-60 хвилин. Оскільки 

температурні дані можуть виявити підготовку бджіл до роїння на ранніх етапах, 

авторами дослідження рекомендується збір даних про внутрішню та зовнішню 

температури з кроком у хвилину. Для визначення тривалих станів, як процес 

медозбору та його закінчення, рекомендується збір даних кожні 4 години.  

Оскільки записи даних про температуру з набору даних можуть бути 

нестабільними та похвилинний інтервал може призвести до великих об’ємів даних, 
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для ідентифікації точкових станів було обрано розмір інтервалу 15 хвилин. Для 

визначення глобальніших станів, як прокидання від зимівлі та смерть колонії, було 

використано інтервали у 4 години. 

Процес попередньої обробки даних на основі метаданих здійснювався згідно 

з розробленим алгоритмом, що включав наступні етапи: 

1. Агрегація даних: трансформація первинних похвилинних даних у 15-

хвилинні інтервали для аналізу точкових станів та 4-годинні інтервали для 

глобальних станів з видаленням надлишкових або нерелевантних записів, що 

дозволило оптимізувати обчислювальну складність моделей без значної втрати 

інформативності. 

2. Селективний експорт діапазонів: експорт виключно тих часових 

сегментів, що відповідають попередньо визначеним стабільним діапазонам та 

містять цільові стани. 

3. Інтерполяція та нормалізація даних: заповнення поодиноких пропусків 

у даних, застосування методів інтерполяції та згладжування до часових рядів ваги 

та температури для зменшення впливу шуму. 

4. Розрахунок похідних значень: обчислення нових ознак, а саме: відносну 

зміну ваги у відсотках порівняно зі значеннями на 3-му та 5-му кроках тому, 

середнього значення внутрішніх сенсорів температури, відношення зовнішньої 

температури до середньої внутрішньої. 

Приклад анотованого відрізку після попередньої обробки наведено на рис. 

4.3, на якому показано приклад роботи згладжування показників ваги, графік 

відсоткової зміни ваги, а також графік середнього значення температури. 
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Рисунок 4.3 Візуалізація відрізку даних після обробки, з подією підгодовування 

 

Для задачі ідентифікації станів було розроблено дві нейромережеві моделі, 

що відрізняються за своїм функціональним призначенням: 

• Модель для ідентифікації точкових станів: призначена для виявлення 

короткочасних подій, таких як роїння, підгодовування та вилучення меду 

пасічником. 

• Модель для глобальних станів: сфокусована на класифікації тривалих 

станів, включаючи нормальний стан функціонування колонії, загибель колонії, 

період весняного розвитку (розігріву) після зимівлі та активний медозбір. 
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4.2.3 Модель ідентифікації точкових станів 

 

На рис. 4.3 наведено візуалізацію, що включає подію підгодовування. На ній 

видно, що графік відсоткового відношення ваги відповідно реагує на додавання 

пасічником прикорму, що може спростити ідентифікацію цього стану серед інших 

даних. Подібна поведінка графіка спостерігається під час подій роїння та забору 

меду, як наведено на рис. 4.4 та рис 4.5 

 

 
Рисунок 4.4 Візуалізація відрізку даних після обробки, з подією роїння 
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Рисунок 4.5 Візуалізація відрізку даних після обробки, з подіями роїння та забору 

меду. 

 

Процес підготовки даних для навчання моделі ідентифікації точкових станів 

складається з наступних кроків: 

1. Формування вікон даних: для кожної цільової події було виділено 

часовий інтервал, що охоплює 8 годин до події та 4 години після неї. 

2. Сегментація даних з використанням рухомого вікна: застосування 

методу сегментації з вікном у 24 записи (6 годин) з кроком зміщення 1 від початку 

часового діапазону до останнього можливого сегменту. Для забезпечення 

стабільності процесу навчання та підвищення точності ідентифікації було 

впроваджено внутрішній часовий буфер у 6 записів - сегмент не позначався як 

такий що має подію якщо цільова подія потрапляла в крайні 6 записів. Буфер 
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дозволяє гарантувати наявність повного попереднього набору характеристик для 

коректного визначення. 

3. Рандомізація списку сегментів. 

4. Балансування сегментів. Ціль цього кроку - отримання рівномірного 

розподілу сегментів з різними станами та без виражених станів. Оскільки деякі 

стани мають менше представлення в початковому наборі даних (22 сегменти зі 

станом збору меду), а інші значно більше (381, підгодовування), балансування 

відбувалось до значень наближених до кількості сегментів з станом роїння, тобто 

120. 

5. Розділення збалансованого набору сегментів на навчальну (80%) та 

тестову (20%) вибірки. Тестова вибірка використовувалась виключно для фінальної 

оцінки тренованої моделі. 

Після процесу підготовки, фінальний навчальний набір мав наступний 

розподіл класів: 30.3% сегментів відповідали стану роїння, 30.3% - підгодовування, 

6.5% з ознаками збору меду та 32% без вираженого стану.  Для навчання моделі 

було використано наступні характеристики: відносна зміна ваги щодо N-3 кроку, 

місяць, година. На рис. 4.6 наведена візуалізація моделі нейронної мережі. З неї 

видно що нейронна мережа використовує два послідовних шари LSTM для 

виявлення залежностей у часі, а також використовує пакетна нормалізація та 

Dropout для стабілізації та регуляризації. Вихідний шар з сигмоїдною активацією 

генерує прогнози для ідентифікації станів. 
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Рисунок 4.6 Структура моделі ідентифікації точкових станів 

 

Наведена модель нейронної мережі навчалась протягом 100 епох зі значенням 

параметру batch size 16. Під час навчання моделі було використано метод 

адаптивної оптимізації швидкості навчання ReduceLROnPlateau, що дозволяє 

автоматично зменшувати швидкість навчання під час тренування моделі, коли її 

продуктивність перестає покращуватись. Прогрес тренування у вигляді метрик 

функції втрат та точності наведено на рис. 4.7. 
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Рисунок 4.7 Прогрес тренування моделі ідентифікації точкових станів 

 

Після навчання модель була протестована на окремій вибірці даних методами 

classification_report та classification_report бібліотеки sklearn результати чого 

наведено у таблиці 4.1. Загальна точність моделі для ідентифікації точкових станів 

вулика становить 96%. 

 

Таблиця 4.1 

Результати тестування моделі ідентифікації точкових станів 

 Влучність Повнота F1 

Роїння 

0 1.00 0.98 0.99 

1 0.95 1.00 0.98 

Точність 0.98 

Підгодовування 

0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

Точність 1.00 

Забір меду 

0 1.00 0.97 0.99 

1 0.60 1.00 0.75 

Точність 0.97 

Загальна точність: 0.96 
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4.2.3 Модель ідентифікації глобальних станів 

Процес підготовки даних для навчання моделі, спрямованої на ідентифікацію 

глобальних станів (нормальний стан, загибель колонії, весняний розвиток, 

медозбір), виконувався за методологією, подібною до описаної для точкових станів, 

однак з низкою ключових модифікацій. Ці відмінності зумовлені використанням 

даних, агрегованих до 4-годинних інтервалів, та особливостями анотування 

тривалих станів за допомогою повторюваних часових міток. 

Зокрема, з огляду на збільшений часовий крок агрегації (4 години), для 

кожного запису, що позначає певний глобальний стан, було виділено ширший 

контекстний діапазон даних, що охоплює по 52 години до та після відповідної 

часової мітки. Розмір сегмента для аналізу було збережено на рівні 24 елементів, 

що при 4-годинній дискретизації відповідає тривалості у 96 годин (4 доби). Такий 

розмір вікна був обраний для уможливлення захоплення довготривалої динаміки 

показників сенсорів, що охоплює кілька діб, що є релевантним для ідентифікації 

глобальних станів вулика. 

У зв'язку із застосованим методом повторюваного анотування тривалих 

станів, для уникнення надлишковості у навчальній вибірці, процес сегментації було 

доповнено етапом елімінації потенційно дублюючих сегментів, що могли 

виникнути через періодичне маркування одного й того ж стану, для уникнення 

надлишковості у навчальній вибірці. 

Для навчання цієї моделі було використано наступні три характеристики: 

відносна зміна ваги вулика щодо третього попереднього часового кроку (N-3), 

відношення зовнішньої температури до середньої внутрішньої температури вулика, 

місяць. 

Архітектура моделі також була модифікована. Ключовими відмінностями є 

збільшення в 3 рази кількості нейронів у шарах LSTM, та використання функції 

втрат для багатокласової класифікації. Модель була навчена протягом 100 епох з 

параметром batch size 16. На рисунку 4.8 наведено прогрес навчання моделі. 
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Рисунок 4.8 Прогрес тренування моделі ідентифікації глобальних станів 

 

Результати тестування моделі наведено на таблиці 4.2. Оцінка продуктивності 

розробленої моделі для ідентифікації глобальних станів на тестовій вибірці виявила 

високу загальну ефективність. Сукупна точність моделі, що враховує всі стани, 

досягла дев'яноста двох відсотків. 

 

Таблиця 4.2 

Результати тестування моделі ідентифікації глобальних станів 

 Влучність Повнота F1 

Смерть 

0 0.92 1.00 0.96 

1 1.00 0.88 0.93 

Точність 0.95 

Розігрів після зими 

0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

Точність 1.00 

Нормальний стан 

0 0.96 0.96 0.96 

1 0.91 0.91 0.91 

Точність 0.95 
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Медозбір 

0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

Точність 1 

Загальна точність: 0.92 

 

Аналіз ефективності для окремих станів показав особливо високі результати 

для ідентифікації періодів «Весняного розвитку» та «Медозбору». У випадку 

«Весняного розвитку» модель досягла практично ідеальних показників за всіма 

ключовими метриками, забезпечивши стовідсоткову точність класифікації. 

Ідентифікація стану «Медозбір» також продемонструвала максимальні значення 

точності, повноти та F1-міри для коректного визначення цього стану, при цьому 

загальна точність класифікації для цієї бінарної задачі була зафіксована на високому 

рівні у дев'яносто п'ять відсотків. 

Для стану «Загибель колонії» модель показала відмінну точність при 

виявленні самого стану, тобто практично не генерувала хибних спрацювань щодо 

загибелі, однак дещо поступалася у повноті, пропускаючи невелику частку 

реальних випадків. Незважаючи на це, збалансована F1-міра залишалася високою, 

а точність бінарної класифікації для цього стану також була значною, на рівні 

дев'яноста п'яти відсотків. Розпізнавання «Нормального стану» характеризувалося 

добре збалансованими показниками точності та повноти для виявлення цього стану, 

що відобразилося у високому значенні F1-міри. Загальна точність класифікації 

нормального стану також була на рівні дев'яноста п'яти відсотків. 

Таким чином, розроблена модель продемонструвала високу надійність у 

розпізнаванні ключових глобальних станів бджолиної сім'ї, з особливо високою 

ефективністю для станів весняного розвитку та медозбору, та збалансованою 

продуктивністю для ідентифікації нормального стану та загибелі колонії. 
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4.3 Застосування нейромережевих моделей в системі моніторингу бджіл 

 

4.3.1 Розробка моніторингової системи 

 

Центральним елементом розробленої системи є мікроконтролерний модуль 

ESP32 DevkitV1. Цей вибір обґрунтований його високою продуктивністю, низьким 

енергоспоживанням, достатньою кількістю периферійних інтерфейсів для 

підключення необхідних датчиків, та наявністю вбудованого модуля Wi-FI, що є 

критично важливим для реалізації бездротової передачі даних. ESP32 DevkitV1 

базується на двоядерному процесорі Tensilica Xtensa LX6, що забезпечує достатню 

обчислювальну потужність для обробки даних з сенсорів та управління 

комунікаційними протоколами. 

Для моніторингу температури та вологи всередині вулика було обрано 

цифровий датчик DHT11. Цей датчик характеризується простотою підключення та 

прийнятною точністю для даної задачі. Датчик розміщується у центральній частині 

вулика, в міжрамковому просторі, таким чином, щоб мінімально турбувати бджіл і 

водночас отримувати репрезентативні дані про стан розплідної зони. 

Вимірювання ваги було реалізовано на основі чотирьох тензометричних 

датчиків, розрахованих на максимальне навантаження до 50 кг, об’єднаних за 

схемою вимірювального мосту. Ілюстрацію методу підключення тензодатчиків до 

аналого-цифрового перетворювача HX711 наведено на рис. 4.9. Використання 

чотирьох датчиків, що встановлюються під ніжки вулика, дозволяє рівномірно 

розподілити навантаження та забезпечити стабільність конструкції. Сумарна 

максимальна вага, яку може виміряти система (200 кг), є достатньою для більшості 

типів вуликів, навіть під час інтенсивного медозбору. Аналоговий сигнал з 

тензодатчиків підсилюється та перетворюється у цифровий формат за допомогою 

спеціалізованого 24-бітного аналого-цифрового перетворювача (АЦП) HX711. Цей 

АЦП розроблений спеціально для роботи з тензодатчиками та забезпечує високу 
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точність вимірювань ваги. Модуль HX711 комунікує з мікроконтролером ESP32 за 

допомогою двопровідного інтерфейсу. 

 

 
Рисунок 4.9 Механізм підключення тензодатчиків та АЦП HX711 методом 

вимірювального мосту 

 

Автономність цієї системи забезпечується або за допомогою powerbank, або 

блоку гальванічних елементів. Для оптимізації енергоспоживання в програмному 

забезпеченні реалізовано режим глибокого сну для мікроконтролера ESP32. 

Для мікроконтролера ESP32 було розроблено програмне забезпечення мовою 

C++ з використанням середовища розробки Arduino IDE та відповідних бібліотек 

для роботи з ESP32, датчиком DHT11 та АЦП HX711. Алгоритм роботи програми 

передбачає періодичне "пробудження" мікроконтролера з режиму глибокого сну. 

Після пробудження відбувається ініціалізація периферійних пристроїв, опитування 
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датчиків температури, вологості та ваги. Отримані дані тимчасово зберігаються у 

внутрішній пам'яті контролера. 

Для передачі зібраних даних до хмарного сховища використовується 

вбудований Wi-Fi модуль ESP32. Для доступу до мережі Інтернет було використано 

стаціонарну точку доступу Wi-Fi з підключенням до Інтернету, що дозволяє 

організувати постійний канал зв'язку. Альтернативно, в якості точки доступу може 

бути використаний смартфон під час візитів пасічника. 

З метою економії енергії та забезпечення надійності, Wi-Fi з'єднання 

встановлюється лише на час, необхідний для передачі даних. Після успішного 

опитування датчиків, ESP32 активує Wi-Fi, підключається до попередньо 

налаштованої мережі та встановлює з'єднання з сервісом хмарного зберігання 

Dropbox. Для автентифікації та авторизації доступу до певного облікового запису 

Dropbox використовується заздалегідь згенерований токен доступу , що дозволяє 

програмі завантажувати файли у визначену теку без необхідності введення логіну 

та паролю. Дані передаються у форматі текстового файлу, що містить часову мітку 

та значення виміряних параметрів. Після успішної передачі даних, Wi-Fi модуль 

вимикається, і мікроконтролер знову переходить у режим глибокого сну на 

визначений інтервал часу. 

Таким чином, пасічник завжди може мати доступ до записів з системи 

моніторингу а також проводити їх аналіз як за допомогою мобільного застосунку, 

так і на ПК. Застосування наведеної системи автоматизації збирання даних та 

контролю стану бджолиної сім’ї суттєво скорочує час на її обслуговування з боку 

пасічника та розширює кількість параметрів контролю. 

 

4.3.2 Аналіз отриманих даних 

 

Під час аналізу отриманих даних з моніторингової системи було виділено два 

ключових аспекти: термодинаміку вулика та динаміку ваги. У звʼязку з помилками 

зчитувань даних температури та відсутності звʼязку для передачі даних, кінцевий 

набір даних містив періоди з відсутніми даними або тільки одним класом даних - 
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вагою чи температурою. Для забезпечення стабільності даних під час аналізу 

температурних показників, дані було агреговано у формат 4-годиннимих інтервалів, 

а також застосовано методи лінійної інтерполяції бібліотеки Pandas для заповнення 

проміжків. Така дискретизація дозволила виявити як добові ритми активності 

бджолиної сім’ї, так і довгострокові тенденції розвитку. Порівняння початкових та 

інтерпольованих показників температури наведено на рис. 4.10. З порівняння 

видно, що застосування інтерполяції даних дозволяє ефективно згладити помилкові 

читання сенсорів з збереженням інформативності даних. 

 

 
Рисунок 4.10 Порівняння початкових (блакитні) та інтерпольованих (сині) 

показників температури 

 

На рисунку 4.11 наведено отриману в результаті обробки динаміку зовнішньої 

та внутрішньої температур протягом періоду спостережень з 15 лютого по 15 

березня. На отриманих даних видно зріст внутрішньої температури з 15°C до 32°C 

протягом трьох діб, що свідчить про зміну внутрішнього стану бджолиної сім’ї з 

зимівлі до весняної активності та початку весняного розплоду. Також, примітною є 

стабільність показників після зміни стану, що вказує на активний період розплоду. 

Зниження температури у кінці цього періоду свідчить про зменшення активності 

бджолиної сім’ї. 
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Рисунок 4.11 Візуалізація інтерпольованої температурної динаміки під час 

прокидання бджолиної сімʼї зі сплячки 

 

Для аналізу ваги, дані було агреговано у формат з інтервалами у 15 хвилин, а 

також використано інтерполяцію даних для заповнення проміжків. Рисунок 4.12 

відображає процес накопичення медових запасів протягом сезону збору нектару, а 

також подальшу динаміку ваги. Фаза активного медозбору демонструє інтенсивне 

зростання ваги від 45 кг до 63 кг, що становить приріст у 18 кг за 2.5 місяці. Період 

стабілізації після медозбору характеризується поступовим зниженням ваги, що 

пов’язано з споживанням нектару бджолами. Різкі короткочасні зниження значень 

ваги були спричинені втручанням пасічника, а саме зняттям кришки для проведення 

огляду. 
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Рисунок 4.12 Візуалізація динаміки ваги у вулику 

 

4.3.3 Застосування нейромережевих моделей для ідентифікації стану 

бджолиної сім’ї 

 

Для практичного застосування розроблених нейромережевих моделей було 

проведено їх валідацію на двох різних сегментах даних, отриманих з 

моніторингової системи, з попереднім обчисленням похідного значення 

відношення внутрішньої та зовнішньої температур. 

Перший етап тестування був зосереджений на ідентифікації стану весняного 

пробудження бджолиної сім'ї. У зв'язку з відсутністю даних про вагу для цього 

періоду, значення зміни ваги було штучно встановлено як нульове. Результати 

класифікації, представлені на рис. 4.13, виявили суттєвий недолік моделі: у період 

до кінця лютого, коли внутрішня температура вулика коливалася в межах 10-20°C, 

модель помилково ідентифікувала стан сім'ї як "мертвий вулик". Аналіз отриманих 

результатів показує, що за відсутності даних про вагу, модель виявилася надмірно 

чутливою до схожості температурних коливань у стані зимового спокою та стану 

загиблої колонії, що вказує на її недостатню надійність при роботі з неповними 

наборами даних. Водночас, модель продемонструвала свою ефективність, коректно 

визначивши початок весняної активності приблизно з 25 лютого, що на графіку 

збігається з різким стрибком та стабілізацією внутрішньої температури на рівні, що 

перевищує 30°C, на тлі значно нижчої зовнішньої температури. Це свідчить про те, 
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що температурна динаміка є достатньо інформативною ознакою для ідентифікації 

початку активного розплоду, навіть за відсутності інших даних 

 

 
Рисунок 4.13 Візуалізація даних з початком весняної активності та 

ідентифікаціями 

 

Другий етап тестування стосувався ідентифікації стану медозбору на 

сегменті даних з червня по вересень, який містив лише інформацію про вагу. 

Початкове застосування моделі виявилося незадовільним, оскільки всі періоди були 

класифіковані як "нормальна динаміка". Це підкреслює, що модель є 

мультифакторною і не може функціонувати, спираючись лише на один параметр. 

Після того, як відношення температур було штучно встановлено на константному 

рівні 0.7, модель змогла успішно ідентифікувати період активного медозбору 

протягом липня, що на графіку, наведеному на рис 4.14 відповідає фазі інтенсивного 
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зростання ваги з 45 кг до 63 кг. Однак, модель не змогла розпізнати цей стан у 

серпні, класифікувавши його як "нормальну динаміку", незважаючи на позитивну 

динаміку зростання показників ваги. Цей результат вказує на  проблему 

узагальнення моделі, яка пов'язана з відсутністю у навчальному наборі даних 

прикладів медозбору, що відбувався у серпні. Модель вивчила не тільки сам патерн 

накопичення ваги, але також його часову прив'язку до конкретного місяця, що може 

обмежити її практичне застосування в умовах, які відрізняються від умов у 

навчальній вибірці.  

Для додаткової верифікації отриманих результатів було проведено два 

контрольні тести: з імітацією від'ємної динаміки ваги та з нульовим відношенням 

температур. В обох сценаріях модель стійко класифікувала стан як "нормальна 

динаміка", що підтверджує її здатність розрізняти специфічний патерн медозбору 

та не активуватися за завідомо некоректних або нетипових умов, незважаючи на 

описані обмеження. 

 

 
Рисунок 4.14 Графік ваги вулика з ідентифікованими станами 

 

На основі отриманих результатів можна зробити висновок, що високі 

показники точності моделей, продемонстровані під час навчання та тестування на 
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початковому наборі даних, не є гарантією їх ефективної роботи в менш 

контрольованих та суттєво відмінних умовах. Такі фактори як клімат, регіон, порода 

бджіл та формат чи розмір вулику можуть суттєво вплинути на ефективність роботи 

навченої нейронної мережі з новими даними. Також, практичне застосування 

виявило вразливість нейронної мережі до неповноти даних, де відсутність одного з 

каналів інформації призводить до кардинально помилкової класифікації. Хоч 

одиничні пропуски зчитувань можуть бути компенсовані застосовуючи методи 

інтерполяції, систематичні та тривалі помилки зчитувань можуть призвести до 

помилкових результатів класифікації станів. Це підкреслює важливість 

забезпечення стабільності, автономності та надійності апаратних компонентів 

систем моніторингу, а також необхідність розробки алгоритмічних підходів, 

стійких до часткової втрати даних. 

Водночас практичне випробування підтвердило ефективність використання 

відносних, а не абсолютних показників, що сприяло узагальненню моделей. 

Завдяки цьому, модель змогла здебільшого успішно ідентифікувати стани в умовах, 

що відрізнялися від початкової вибірки. Проте, були виявлені й обмеження в 

здатності до узагальнення, зокрема, коли модель пов'язала події не лише з 

характерною динамікою сенсорних даних, але і з конкретним місяцями, що було 

зумовлено особливостями навчального набору даних. Сезонний контекст є 

важливим параметром моделі для ефективної класифікації станів, тому для 

розробки дійсно універсальної системи необхідно досягти гнучкості не лише в 

інтерпретації сенсорних показників, але й у розумінні часових меж подій. Це 

вимагає більшої варіативності даних, отриманих в різних географічних локаціях, 

використовуючи різні породи бджіл та різні вулики. Забезпечуючи краще 

представлення в даних різноманітних умов, притаманних конкретним станам, 

можна покращити здатність моделі узагальнювати їх характеристики. 

 

4.4 Висновки до четвертого розділу  
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У четвертому розділі роботи було досліджено проблематику застосування 

сенсорних технологій та нейромережевих методів у системах моніторингу 

бджолиних вуликів. Проведено глибокий аналіз теоретичних засад використання 

таких систем, зокрема розглянуто концепцію "точного бджільництва", що включає 

безперервний збір даних, їх автоматичний аналіз та реалізацію рішень на основі 

об'єктивної інформації. Виявлено, що інтеграція сенсорних пристроїв та нейронних 

мереж дозволяє ефективно ідентифікувати та прогнозувати різні стани бджолиних 

сімей, такі як роїння, медозбір, підгодовування та загибель колонії. 

Оцінено переваги та обмеження різних типів сенсорних пристроїв. 

Встановлено, що комбіноване використання датчиків дозволяє отримати 

комплексну картину стану бджолиних вуликів, проте виникають проблеми з 

прополісуванням, термічною стабільністю сенсорів, а також енергоспоживанням у 

віддалених умовах моніторингу. 

Дослідження нейромережевих моделей продемонструвало ефективність 

архітектури LSTM для аналізу часових рядів сенсорних даних. Запропоновані 

моделі забезпечили високу точність ідентифікації як короткочасних (точкових) 

станів, так і тривалих (глобальних) станів колонії. Зокрема, модель ідентифікації 

точкових станів показала загальну точність 96%, а модель глобальних станів 

досягла 92% точності класифікації. Виявлено, що ефективність моделей залежить 

від наявності комплексних даних, при цьому їх точність може суттєво знизитись 

при використанні неповних наборів інформації. 

Для практичної перевірки розроблених моделей створено експериментальну 

моніторингову систему на основі мікроконтролера ESP32, сенсорів DHT11 та 

HX711, з хмарним зберіганням даних. Результати тестування системи показали її 

здатність оперативно виявляти зміни внутрішнього стану вулика, такі як весняне 

пробудження та медозбір. Водночас, тестування виявило обмеження моделей при 

неповних даних, підкреслюючи необхідність подальшого розвитку моделей для 

покращення їх універсальності та адаптивності до різних умов експлуатації. 

Таким чином, четвертий розділ підтвердив доцільність і перспективність 

використання сенсорних технологій та нейромережевих моделей для моніторингу 
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бджолиних вуликів, вказуючи на шляхи подолання існуючих викликів та 

покращення функціональності систем. 

Основні наукові і практичні результати четвертого розділу опубліковано в 

роботах [71,75,78,81]. 
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ВИСНОВКИ 

 

 

У результаті виконання дисертаційного дослідження було досліджено 

актуальну проблему моніторингу бджолиної сім’ї та ідентифікації її станів. 

Відповідно до мети дослідження, яка полягала у розробці моделей нейронних 

мереж та методів обробки даних для автоматизованої ідентифікації станів 

бджолиної сім’ї, отримано такі науково-практичні результати: 

- виконано аналітичний огляд сучасного стану проблеми моніторингу 

бджіл та обмежень традиційних методів; обґрунтовано доцільність застосування 

нейронних мереж для визначення стану бджолиної сім’ї; 

- розроблено архітектури згорткових нейронних мереж для задач 

візуального моніторингу: виявлення бджіл на зображеннях та класифікації 

індивідуальних фізіологічних станів; 

- створено моделі класифікації станів на основі акустичних даних, 

оглянуто можливості їх використання на нових даних;  

- розроблено методи обробки часових даних та проведено їх 

імплементацію у моделі класифікації станів та подій у вулику;  

- проведено експериментальну апробацію навчених моделей 
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